RandomCrop¶
- class paddle.vision.transforms. RandomCrop ( size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant', keys=None ) [source]
-
Crops the given CV Image at a random location.
- Parameters
-
size (sequence|int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made.
padding (int|sequence, optional) – Optional padding on each border of the image. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. Default: None, without padding.
pad_if_needed (boolean, optional) – It will pad the image if smaller than the desired size to avoid raising an exception. Default: False.
fill (float|tuple, optional) – Pixel fill value for constant fill. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Default: 0.
padding_mode –
Type of padding. Should be: constant, edge, reflect or symmetric. Default: ‘constant’.
constant: pads with a constant value, this value is specified with fill
edge: pads with the last value on the edge of the image
reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2]
symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3]
keys (list[str]|tuple[str], optional) – Same as
BaseTransform
. Default: None.
- Shape
-
img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.
- Returns
-
A callable object of RandomCrop.
Examples
>>> import paddle >>> from paddle.vision.transforms import RandomCrop >>> transform = RandomCrop(224) >>> fake_img = paddle.randint(0, 255, shape=(3, 324,300), dtype = 'int32') >>> print(fake_img.shape) [3, 324, 300] >>> crop_img = transform(fake_img) >>> print(crop_img.shape) [3, 224, 224]