bitwise_left_shift¶
- paddle. bitwise_left_shift ( x, y, is_arithmetic=True, out=None, name=None ) [source]
-
Apply
bitwise_left_shift
on TensorX
andY
.\[Out = X \ll Y\]Note
paddle.bitwise_left_shift
supports broadcasting. If you want know more about broadcasting, please refer to please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – Input Tensor of
bitwise_left_shift
. It is a N-D Tensor of uint8, int8, int16, int32, int64.y (Tensor) – Input Tensor of
bitwise_left_shift
. It is a N-D Tensor of uint8, int8, int16, int32, int64.is_arithmetic (bool, optional) – A boolean indicating whether to choose arithmetic shift, if False, means logic shift. Default True.
out (Tensor, optional) – Result of
bitwise_left_shift
. It is a N-D Tensor with the same data type of input Tensor. Default: None.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Result of
bitwise_left_shift
. It is a N-D Tensor with the same data type of input Tensor. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[1,2,4,8],[16,17,32,65]]) >>> y = paddle.to_tensor([[1,2,3,4,], [2,3,2,1]]) >>> paddle.bitwise_left_shift(x, y, is_arithmetic=True) Tensor(shape=[2, 4], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[2 , 8 , 32 , 128], [64 , 136, 128, 130]])
>>> import paddle >>> x = paddle.to_tensor([[1,2,4,8],[16,17,32,65]]) >>> y = paddle.to_tensor([[1,2,3,4,], [2,3,2,1]]) >>> paddle.bitwise_left_shift(x, y, is_arithmetic=False) Tensor(shape=[2, 4], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[2 , 8 , 32 , 128], [64 , 136, 128, 130]])