ResNet¶
- class paddle.vision.models. ResNet ( block, depth=50, width=64, num_classes=1000, with_pool=True, groups=1 ) [source]
-
ResNet model from “Deep Residual Learning for Image Recognition”.
- Parameters
-
Block (BasicBlock|BottleneckBlock) – Block module of model.
depth (int, optional) – Layers of ResNet, Default: 50.
width (int, optional) – Base width per convolution group for each convolution block, Default: 64.
num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000.
with_pool (bool, optional) – Use pool before the last fc layer or not. Default: True.
groups (int, optional) – Number of groups for each convolution block, Default: 1.
- Returns
-
Layer. An instance of ResNet model.
Examples
>>> import paddle >>> from paddle.vision.models import ResNet >>> from paddle.vision.models.resnet import BottleneckBlock, BasicBlock >>> # build ResNet with 18 layers >>> resnet18 = ResNet(BasicBlock, 18) >>> # build ResNet with 50 layers >>> resnet50 = ResNet(BottleneckBlock, 50) >>> # build Wide ResNet model >>> wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2) >>> # build ResNeXt model >>> resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32) >>> x = paddle.rand([1, 3, 224, 224]) >>> out = resnet18(x) >>> print(out.shape) [1, 1000]
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments