sequence_first_step¶
- paddle.static.nn. sequence_first_step ( input ) [source]
-
Only supports Tensor as input. Given the input Tensor, it will select first time-step feature of each sequence as output.
Case 1: input is 1-level Tensor: input.lod = [[0, 2, 5, 7]] input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] input.shape = [7, 1] output is a Tensor: out.shape = [3, 1] out.shape[0] == len(x.lod[-1]) == 3 out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) Case 2: input is a 2-level Tensor containing 3 sequences with length info [2, 0, 3], where 0 means empty sequence. The first sequence contains 2 subsequence with length info [1, 2]; The last sequence contains 3 subsequence with length info [1, 0, 3]. input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] input.shape = [7, 1] It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 output is a Tensor: out.shape= [5, 1] out.lod = [[0, 2, 2, 5]] out.shape[0] == len(x.lod[-1]) == 5 out.data = [[1.], [3.], [4.], [0.0], [6.]] where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.)
- Parameters
-
input (Tensor) – Tensor with lod_level no more than 2. The data type should be float32 or float64.
- Returns
-
Tensor consist of the sequence’s first step vector. The data type is float32 or float64.
- Return type
-
Tensor
Examples
>>> import paddle >>> paddle.enable_static() >>> x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) >>> x_first_step = paddle.static.nn.sequence_first_step(input=x)