pdist¶
- paddle. pdist ( x, p=2.0, name=None ) [source]
-
Computes the p-norm distance between every pair of row vectors in the input.
- Parameters
-
x (Tensor) – The input tensor with shape \(N \times M\).
p (float, optional) – The value for the p-norm distance to calculate between each vector pair. Default: \(2.0\).
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor with shape \(N(N-1)/2\) , the dtype is same as input tensor.
Examples
>>> import paddle >>> paddle.seed(2023) >>> a = paddle.randn([4, 5]) >>> print(a) Tensor(shape=[4, 5], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.06132207, 1.11349595, 0.41906244, -0.24858207, -1.85169315], [-1.50370061, 1.73954511, 0.13331604, 1.66359663, -0.55764782], [-0.59911072, -0.57773495, -1.03176904, -0.33741450, -0.29695082], [-1.50258386, 0.67233968, -1.07747352, 0.80170447, -0.06695852]]) >>> pdist_out=paddle.pdist(a) >>> print(pdist_out) Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True, [2.87295413, 2.79758120, 3.02793980, 3.40844536, 1.89435327, 1.93171620])