cosine_similarity¶
- paddle.nn.functional. cosine_similarity ( x1, x2, axis=1, eps=1e-08 ) [source]
-
Compute cosine similarity between x1 and x2 along axis.
- Parameters
-
x1 (Tensor) – First input. float32/double.
x2 (Tensor) – Second input. float32/double.
axis (int, optional) – Dimension of vectors to compute cosine similarity. Default is 1.
eps (float, optional) – Small value to avoid division by zero. Default is 1e-8.
- Returns
-
Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
Examples
Case 0: x1 = [[0.8024077 0.9927354 0.27238318 0.8344984 ] [0.48949873 0.5797396 0.65444374 0.66510963] [0.1031398 0.9614342 0.08365563 0.6796464 ] [0.10760343 0.7461209 0.7726148 0.5801006 ]] x2 = [[0.62913156 0.1536727 0.9847992 0.04591406] [0.9098952 0.15715368 0.8671125 0.3156102 ] [0.4427798 0.54136837 0.5276275 0.32394758] [0.3769419 0.8535014 0.48041078 0.9256797 ]] axis = 1 eps = 1e-8 Out: [0.5275037 0.8368967 0.75037485 0.9245899]
- Code Examples:
-
>>> import paddle >>> import paddle.nn as nn >>> paddle.seed(1) >>> x1 = paddle.randn(shape=[2, 3]) >>> x2 = paddle.randn(shape=[2, 3]) >>> result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0) >>> print(result) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [ 0.97689527, 0.99996042, -0.55138415])