scaled_dot_product_attention¶
- paddle.nn.functional. scaled_dot_product_attention ( query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, training=True, name=None ) [source]
-
The equation is:
\[result=softmax(\frac{ Q * K^T }{\sqrt{d}}) * V\]where :
Q
,K
, andV
represent the three input parameters of the attention module. The dimensions of the three parameters are the same.d
represents the size of the last dimension of the three parameters.Warning
This API only supports inputs with dtype float16 and bfloat16.
- Parameters
-
query (Tensor) – The query tensor in the Attention module. 4-D tensor with shape: [batch_size, seq_len, num_heads, head_dim]. The dtype can be float61 or bfloat16.
key (Tensor) – The key tensor in the Attention module. 4-D tensor with shape: [batch_size, seq_len, num_heads, head_dim]. The dtype can be float61 or bfloat16.
value (Tensor) – The value tensor in the Attention module. 4-D tensor with shape: [batch_size, seq_len, num_heads, head_dim]. The dtype can be float61 or bfloat16.
attn_mask (Tensor,optional) – A float mask of the same type as query, key, value that is added to the attention score.
dropout_p (float) – The dropout ratio.
is_causal (bool) – Whether enable causal mode.
training (bool) – Whether it is in the training phase.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
- The attention tensor.
-
4-D tensor with shape: [batch_size, seq_len, num_heads, head_dim]. The dtype can be float16 or bfloat16.
- Return type
-
out(Tensor)
Examples
>>> >>> import paddle >>> q = paddle.rand((1, 128, 2, 16), dtype=paddle.bfloat16) >>> output = paddle.nn.functional.scaled_dot_product_attention(q, q, q, None, 0.9, False) >>> print(output) >>>