Hardtanh¶
- class paddle.nn. Hardtanh ( min=- 1.0, max=1.0, name=None ) [source]
-
Hardtanh Activation. Create a callable object of Hardtanh.
\[\begin{split}Hardtanh(x)= \left\{ \begin{array}{cll} max,& & \text{if } x > max \\ min,& & \text{if } x < min \\ x,& & \text{otherwise} \end{array} \right.\end{split}\]- Parameters
-
min (float, optional) – The value of min for Hardtanh. Default is -1.
max (float, optional) – The value of max for Hardtanh. Default is 1.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shape:
-
input: Tensor with any shape.
output: Tensor with the same shape as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-1.5, 0.3, 2.5]) >>> m = paddle.nn.Hardtanh() >>> out = m(x) >>> print(out) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [-1. , 0.30000001, 1. ])
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.