embedding

paddle.static.nn. embedding ( input, size, is_sparse=False, is_distributed=False, padding_idx=None, param_attr=None, dtype='float32' ) [source]
Api_attr

Static Graph

The operator is used to lookup embeddings vector of ids provided by input . It automatically constructs a 2D embedding matrix based on the input size (vocab_size, emb_size) and dtype .

The shape of output Tensor is generated by appending an emb_size dimension to the last dimension of the input Tensor shape.

Note: The id in input must satisfy \(0 =< id < size[0]\) , otherwise the program will throw an exception and exit.

Case 1:

input is a Tensor. padding_idx = -1
    input.data = [[1, 3], [2, 4], [4, 127]]
    input.shape = [3, 2]
Given size = [128, 16]
output is a Tensor:
    out.shape = [3, 2, 16]
    out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                [0.345421456, 0.524563927, ..., 0.144534654]],

                [[0.345249859, 0.124939536, ..., 0.194353745],
                [0.945345345, 0.435394634, ..., 0.435345365]],

                [[0.945345345, 0.435394634, ..., 0.435345365],
                [0.0,         0.0,         ..., 0.0        ]]]  # padding data
The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
It will pad all-zero data when ids is 127.

Case 2:

input is a LoDTensor with 1-level LoD. padding_idx = 0
    input.lod = [[2, 3]]
    input.data = [[1], [3], [2], [4], [0]]
    input.shape = [5, 1]
Given size = [128, 16]
output is a LoDTensor:
    out.lod = [[2, 3]]
    out.shape = [5, 1, 16]
    out.data = [[[0.129435295, 0.244512452, ..., 0.436322452]],
                [[0.345421456, 0.524563927, ..., 0.144534654]],
                [[0.345249859, 0.124939536, ..., 0.194353745]],
                [[0.945345345, 0.435394634, ..., 0.435345365]],
                [[0.0,         0.0,         ..., 0.0        ]]]  # padding data
It will pad all-zero data when ids is 0.
Parameters
  • input (Tensor) – A Tensor or LoDTensor with type int64, which contains the id information. The value of the input id should satisfy \(0<= id < size[0]\) .

  • size (tuple|list) – The shape of lookup table parameter. It should have two elements which indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.

  • is_sparse (bool) – The flag indicating whether to use sparse update. This parameter only affects the performance of the backwards gradient update. It is recommended to set True because sparse update is faster. But some optimizer does not support sparse update In these case, is_sparse must be False. Default: False.

  • is_distributed (bool) – Whether to store the embedding matrix in a distributed manner. Only used in multi-machine distributed CPU training. Default: False.

  • padding_idx (int|long|None) – padding_idx needs to be in the interval [-vocab_size, vocab_size). If \(padding\_idx < 0\), the \(padding\_idx\) will automatically be converted to \(vocab\_size + padding\_idx\) . It will output all-zero padding data whenever lookup encounters \(padding\_idx\) in id. And the padding data will not be updated while training. If set None, it makes no effect to output. Default: None.

  • param_attr (ParamAttr) – To specify the weight parameter property. Default: None, which means the default weight parameter property is used. In addition, user-defined or pre-trained word vectors can be loaded with the param_attr parameter. The local word vector needs to be transformed into numpy format, and the shape of local word vector should be consistent with size .

  • dtype (str) – It refers to the data type of output Tensor. It must be float32 or float64. Default: float32.

Returns

Embedding Tensor or LoDTensor mapped by input. The data type is the same as dtype .

Return type

Tensor

Static Examples:
>>> import paddle
>>> import numpy as np
>>> paddle.enable_static()

>>> x = paddle.static.data(name="x", shape = [2, 4], dtype=np.int64)
>>> output = paddle.static.nn.embedding(x, (10, 3),
...             param_attr=paddle.nn.initializer.Constant(value=1.0))
>>> m_output=paddle.mean(output)
>>> place = paddle.CPUPlace()
>>> exe = paddle.static.Executor(place)
>>> exe.run(paddle.static.default_startup_program())

>>> x = np.array([[7, 2, 4, 5],[4, 3, 2, 9]], dtype=np.int64)
>>> out, = exe.run(paddle.static.default_main_program(), feed={'x':x}, fetch_list=[output])
>>> print(out)
[[[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]
 [[1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]
  [1. 1. 1.]]]