Variable¶
- class paddle.static. Variable ( block, type=<VarType.LOD_TENSOR: 7>, name=None, shape=None, dtype=None, lod_level=None, capacity=None, persistable=None, error_clip=None, stop_gradient=False, is_data=False, need_check_feed=False, belong_to_optimizer=False, **kwargs ) [source]
-
Notes
The constructor of Variable should not be invoked directly.
In Static Graph Mode: Please use ** Block.create_var ** to create a Static variable which has no data until being feed.
In Dygraph Mode: Please use ** to_tensor ** to create a dygraph variable with real data.
In Fluid, every input and output of an OP is a variable. In most cases, variables are used for holding different kinds of data or training labels. A variable belongs to a Block . All variable has its own name and two variables in different Block could have the same name.
There are many kinds of variables. Each kind of them has its own attributes and usages. Please refer to the framework.proto for details.
Most of a Variable’s member variables can be set to be None. It mean it is not available or will be specified later.
Examples
In Static Graph Mode:
>>> import paddle.base as base >>> cur_program = base.Program() >>> cur_block = cur_program.current_block() >>> new_variable = cur_block.create_var(name="X", ... shape=[-1, 23, 48], ... dtype='float32')
In Dygraph Mode:
>>> import paddle.base as base >>> import numpy as np >>> import paddle >>> with base.dygraph.guard(): ... new_variable = paddle.to_tensor(np.arange(10))
-
detach
(
)
detach¶
-
Returns a new Variable, detached from the current graph. It will share data with origin Variable and without tensor copy. In addition, the detached Variable doesn’t provide gradient propagation.
- Returns
-
( Variable | dtype is same as current Variable), The detached Variable.
Examples
>>> import paddle >>> paddle.enable_static() >>> # create a static Variable >>> x = paddle.static.data(name='x', shape=[3, 2, 1]) >>> # create a detached Variable >>> y = x.detach()
-
numpy
(
)
numpy¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
Returns a numpy array shows the value of current Variable
- Returns
-
The numpy value of current Variable.
- Return type
-
ndarray
- Returns type:
-
ndarray: dtype is same as current Variable
Examples
>>> import paddle.base as base >>> from paddle.nn import Linear >>> import numpy as np >>> data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') >>> with base.dygraph.guard(): ... linear = Linear(32, 64) ... data = paddle.to_tensor(data) ... x = linear(data) ... print(x.numpy())
-
backward
(
retain_graph=False
)
backward¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
Run backward of current Graph which starts from current Tensor.
- Parameters
-
retain_graph (bool, optional) – If False, the graph used to compute grads will be freed. If you would like to add more ops to the built graph after calling this method(
backward
), set the parameterretain_graph
to True, then the grads will be retained. Thus, setting it to False is much more memory-efficient. Defaults to False. - Returns
-
None
- Return type
-
NoneType
Examples
>>> import numpy as np >>> import paddle >>> paddle.disable_static() >>> x = np.ones([2, 2], np.float32) >>> inputs = [] >>> for _ in range(10): ... tmp = paddle.to_tensor(x) ... # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since ... # there is no one need gradient on it. ... tmp.stop_gradient=False ... inputs.append(tmp) >>> ret = paddle.add_n(inputs) >>> loss = paddle.sum(ret) >>> loss.backward()
-
gradient
(
)
gradient¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
Get the Gradient of Current Variable
- Returns
-
if Variable’s type is LoDTensor, return numpy value of the gradient of current Variable, if Variable’s type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
- Return type
-
ndarray or tuple of ndarray
Examples
>>> import paddle >>> import paddle.base as base >>> import numpy as np >>> # example1: return ndarray >>> x = np.ones([2, 2], np.float32) >>> with base.dygraph.guard(): ... inputs2 = [] ... for _ in range(10): ... tmp = paddle.to_tensor(x) ... tmp.stop_gradient=False ... inputs2.append(tmp) ... ret2 = paddle.add_n(inputs2) ... loss2 = paddle.sum(ret2) ... loss2.retain_grads() ... loss2.backward() ... print(loss2.gradient()) >>> # example2: return tuple of ndarray >>> with base.dygraph.guard(): ... embedding = paddle.nn.Embedding( ... 20, ... 32, ... weight_attr='emb.w', ... sparse=True) ... x_data = np.arange(12).reshape(4, 3).astype('int64') ... x_data = x_data.reshape((-1, 3, 1)) ... x = paddle.to_tensor(x_data) ... out = embedding(x) ... out.backward() ... print(embedding.weight.gradient())
-
clear_gradient
(
)
clear_gradient¶
-
- Notes:
-
1. This API is ONLY available in Dygraph mode
2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python’s GC
Clear (set to
0
) the Gradient of Current VariableReturns: None
Examples
>>> import paddle >>> import paddle.base as base >>> import numpy as np >>> x = np.ones([2, 2], np.float32) >>> inputs2 = [] >>> for _ in range(10): >>> tmp = paddle.to_tensor(x) >>> tmp.stop_gradient=False >>> inputs2.append(tmp) >>> ret2 = paddle.add_n(inputs2) >>> loss2 = paddle.sum(ret2) >>> loss2.retain_grads() >>> loss2.backward() >>> print(loss2.gradient()) >>> loss2.clear_gradient() >>> print("After clear {}".format(loss2.gradient())) 1.0 After clear 0.0
-
to_string
(
throw_on_error,
with_details=False
)
to_string¶
-
Get debug string.
- Parameters
-
throw_on_error (bool) – True if raise an exception when self is not initialized.
with_details (bool) – more details about variables and parameters (e.g. trainable, optimize_attr, …) will be printed when with_details is True. Default value is False;
- Returns
-
The debug string.
- Return type
-
str
Examples
>>> import paddle.base as base >>> import paddle >>> paddle.enable_static() >>> cur_program = base.Program() >>> cur_block = cur_program.current_block() >>> new_variable = cur_block.create_var(name="X", ... shape=[-1, 23, 48], ... dtype='float32') >>> print(new_variable.to_string(True)) >>> print("=============with detail===============") >>> print(new_variable.to_string(True, True)) name: "X" type { type: LOD_TENSOR lod_tensor { tensor { data_type: FP32 dims: -1 dims: 23 dims: 48 } } } stop_gradient: false error_clip: None
-
element_size
(
)
element_size¶
-
Returns the size in bytes of an element in the Tensor.
Examples
>>> import paddle >>> paddle.enable_static() >>> x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool') >>> print(x.element_size()) 1 >>> x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16') >>> print(x.element_size()) 2 >>> x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16') >>> print(x.element_size()) 2 >>> x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32') >>> print(x.element_size()) 4 >>> x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64') >>> print(x.element_size()) 8
- property stop_gradient
-
Indicating if we stop gradient from current Variable
Notes: This Property has default value as
True
in Dygraph mode, while Parameter’s default value is False. However, in Static Graph Mode all Variable’s default stop_gradient value isFalse
Examples
>>> import paddle >>> import paddle.base as base >>> import numpy as np >>> with base.dygraph.guard(): ... value0 = np.arange(26).reshape(2, 13).astype("float32") ... value1 = np.arange(6).reshape(2, 3).astype("float32") ... value2 = np.arange(10).reshape(2, 5).astype("float32") ... linear = paddle.nn.Linear(13, 5) ... linear2 = paddle.nn.Linear(3, 3) ... a = paddle.to_tensor(value0) ... b = paddle.to_tensor(value1) ... c = paddle.to_tensor(value2) ... out1 = linear(a) ... out2 = linear2(b) ... out1.stop_gradient = True ... out = paddle.concat(x=[out1, out2, c], axis=1) ... out.backward() ... assert linear.weight.gradient() is None ... assert out1.gradient() is None
- property persistable
-
Indicating if we current Variable should be long-term alive
Notes: This Property will be deprecated and this API is just to help user understand concept
1. All Variable’s persistable is
False
except Parameters.2. In Dygraph mode, this property should not be changed
Examples
>>> import paddle.base as base >>> cur_program = base.Program() >>> cur_block = cur_program.current_block() >>> new_variable = cur_block.create_var(name="X", ... shape=[-1, 23, 48], ... dtype='float32') >>> print("persistable of current Var is: {}".format(new_variable.persistable)) persistable of current Var is: False
- property is_parameter
-
Indicating if current Variable is a Parameter
Examples
>>> import paddle >>> paddle.enable_static() >>> new_parameter = paddle.static.create_parameter(name="X", ... shape=[10, 23, 48], ... dtype='float32') >>> if new_parameter.is_parameter: ... print("Current var is a Parameter") ... else: ... print("Current var is not a Parameter") Current var is a Parameter
- property grad_name
-
Indicating name of the gradient Variable of current Variable.
Notes: This is a read-only property. It simply returns name of gradient Variable from a naming convention but doesn’t guarantee the gradient exists.
Examples
>>> import paddle >>> paddle.enable_static() >>> x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32') >>> print(x.grad_name) x@GRAD
- property name
-
Indicating name of current Variable
Notes: If it has two or more Variable share the same name in the same Block , it means these Variable will share content in no- Dygraph mode. This is how we achieve Parameter sharing
Examples
>>> import paddle.base as base >>> cur_program = base.Program() >>> cur_block = cur_program.current_block() >>> new_variable = cur_block.create_var(name="X", ... shape=[-1, 23, 48], ... dtype='float32') >>> print("name of current Var is: {}".format(new_variable.name)) name of current Var is: X
- property shape
-
Indicating shape of current Variable
Notes: This is a read-only property
Examples
>>> import paddle.base as base >>> cur_program = base.Program() >>> cur_block = cur_program.current_block() >>> new_variable = cur_block.create_var(name="X", ... shape=[-1, 23, 48], ... dtype='float32') >>> print("shape of current Var is: {}".format(new_variable.shape)) shape of current Var is: [-1, 23, 48]
- property dtype
-
Indicating data type of current Variable
Notes: This is a read-only property
Examples
>>> import paddle.base as base >>> cur_program = base.Program() >>> cur_block = cur_program.current_block() >>> new_variable = cur_block.create_var(name="X", ... shape=[-1, 23, 48], ... dtype='float32') >>> print("Dtype of current Var is: {}".format(new_variable.dtype)) Dtype of current Var is: paddle.float32
- property lod_level
-
Indicating
LoD
info of current Variable, please refer to Tensor to check the meaning ofLoD
Notes:
1. This is a read-only property
2. Don’t support this property in Dygraph mode, it’s value should be
0(int)
Examples
>>> import paddle >>> import paddle.base as base >>> paddle.enable_static() >>> cur_program = base.Program() >>> cur_block = cur_program.current_block() >>> new_variable = cur_block.create_var(name="X", ... shape=[-1, 23, 48], ... dtype='float32') >>> print("LoD Level of current Var is: {}".format(new_variable.lod_level)) LoD Level of current Var is: 0
- property type
-
Indicating Type of current Variable
Notes: This is a read-only property
Examples
>>> import paddle.base as base >>> cur_program = base.Program() >>> cur_block = cur_program.current_block() >>> new_variable = cur_block.create_var(name="X", ... shape=[-1, 23, 48], ... dtype='float32') >>> print("Type of current Var is: {}".format(new_variable.type)) Type of current Var is: VarType.LOD_TENSOR
- property T
-
Permute current Variable with its dimensions reversed.
If n is the dimensions of x , x.T is equivalent to x.transpose([n-1, n-2, …, 0]).
Examples
>>> import paddle >>> paddle.enable_static() >>> x = paddle.ones(shape=[2, 3, 5]) >>> x_T = x.T >>> exe = paddle.static.Executor() >>> x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0] >>> print(x_T_np.shape) (5, 3, 2)
-
clone
(
)
clone¶
-
Returns a new static Variable, which is the clone of the original static Variable. It remains in the current graph, that is, the cloned Variable provides gradient propagation. Calling
out = tensor.clone()
is same asout = assign(tensor)
.- Returns
-
Variable, The cloned Variable.
Examples
>>> import paddle >>> paddle.enable_static() >>> # create a static Variable >>> x = paddle.static.data(name='x', shape=[3, 2, 1]) >>> # create a cloned Variable >>> y = x.clone()
-
get_value
(
scope=None
)
get_value¶
-
Get the value of variable in given scope.
- Parameters
-
scope (Scope, optional) – If scope is None, it will be set to global scope obtained through ‘paddle.static.global_scope()’. Otherwise, use scope. Default: None
- Returns
-
Tensor, the value in given scope.
Examples
>>> import paddle >>> import paddle.static as static >>> import numpy as np >>> paddle.enable_static() >>> x = static.data(name="x", shape=[10, 10], dtype='float32') >>> y = static.nn.fc(x, 10, name='fc') >>> place = paddle.CPUPlace() >>> exe = static.Executor(place) >>> prog = paddle.static.default_main_program() >>> exe.run(static.default_startup_program()) >>> inputs = np.ones((10, 10), dtype='float32') >>> exe.run(prog, feed={'x': inputs}, fetch_list=[y, ]) >>> path = 'temp/tensor_' >>> for var in prog.list_vars(): ... if var.persistable: ... t = var.get_value() ... paddle.save(t, path+var.name+'.pdtensor') >>> for var in prog.list_vars(): ... if var.persistable: ... t_load = paddle.load(path+var.name+'.pdtensor') ... var.set_value(t_load)
-
set_value
(
value,
scope=None
)
set_value¶
-
Set the value to the tensor in given scope.
- Parameters
-
value (Tensor/ndarray) – The value to be set.
scope (Scope, optional) – If scope is None, it will be set to global scope obtained through ‘paddle.static.global_scope()’. Otherwise, use scope. Default: None
- Returns
-
None
Examples
>>> import paddle >>> import paddle.static as static >>> import numpy as np >>> paddle.enable_static() >>> x = static.data(name="x", shape=[10, 10], dtype='float32') >>> y = static.nn.fc(x, 10, name='fc') >>> place = paddle.CPUPlace() >>> exe = static.Executor(place) >>> prog = paddle.static.default_main_program() >>> exe.run(static.default_startup_program()) >>> inputs = np.ones((10, 10), dtype='float32') >>> exe.run(prog, feed={'x': inputs}, fetch_list=[y, ]) >>> path = 'temp/tensor_' >>> for var in prog.list_vars(): ... if var.persistable: ... t = var.get_value() ... paddle.save(t, path+var.name+'.pdtensor') >>> for var in prog.list_vars(): ... if var.persistable: ... t_load = paddle.load(path+var.name+'.pdtensor') ... var.set_value(t_load)
-
size
(
)
size¶
-
Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
- Returns
-
Variable, the number of elements for current Variable
Examples
>>> import paddle >>> paddle.enable_static() >>> # create a static Variable >>> x = paddle.static.data(name='x', shape=[3, 2, 1]) >>> # get the number of elements of the Variable >>> y = x.size()
- property attr_names
-
Get the names of all attributes defined.
-
attr
(
name
)
attr¶
-
Get the attribute by name.
- Parameters
-
name (str) – the attribute name.
- Returns
-
int|str|list, The attribute value. The return value can be any valid attribute type.
- property dist_attr
-
Get distributed attribute of this Variable.
-
abs
(
name=None
)
abs¶
-
Perform elementwise abs for input x.
\[out = |x|\]- Parameters
-
x (Tensor) – The input Tensor with data type int32, int64, float16, float32 and float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor.A Tensor with the same data type and shape as \(x\).
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.abs(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.40000001, 0.20000000, 0.10000000, 0.30000001])
-
abs_
(
name=None
)
abs_¶
-
Inplace version of
abs
API, the output Tensor will be inplaced with inputx
. Please refer to abs.
-
acos
(
name=None
)
acos¶
-
Acos Activation Operator.
\[out = cos^{-1}(x)\]- Parameters
-
x (Tensor) – Input of Acos operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Acos operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.acos(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [1.98231316, 1.77215421, 1.47062886, 1.26610363])
-
acos_
(
name=None
)
acos_¶
-
Inplace version of
acos
API, the output Tensor will be inplaced with inputx
. Please refer to acos.
-
acosh
(
name=None
)
acosh¶
-
Acosh Activation Operator.
\[out = acosh(x)\]- Parameters
-
x (Tensor) – Input of Acosh operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Acosh operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([1., 3., 4., 5.]) >>> out = paddle.acosh(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0. , 1.76274717, 2.06343699, 2.29243159])
-
acosh_
(
name=None
)
acosh_¶
-
Inplace version of
acosh
API, the output Tensor will be inplaced with inputx
. Please refer to acosh.
-
add
(
y,
name=None
)
add¶
-
Elementwise Add Operator. Add two tensors element-wise The equation is:
\[Out=X+Y\]$X$ the tensor of any dimension. $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
This operator is used in the following cases:
The shape of $Y$ is the same with $X$.
The shape of $Y$ is a continuous subsequence of $X$.
For example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,) shape(X) = (2, 3, 4, 5), shape(Y) = (5,) shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2 shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
- Parameters
-
x (Tensor) – Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
y (Tensor) – Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
name (string, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
Examples
>>> import paddle >>> x = paddle.to_tensor([2, 3, 4], 'float64') >>> y = paddle.to_tensor([1, 5, 2], 'float64') >>> z = paddle.add(x, y) >>> print(z) Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True, [3., 8., 6.])
-
add_
(
y,
name=None
)
add_¶
-
Inplace version of
add
API, the output Tensor will be inplaced with inputx
. Please refer to add.
-
add_n
(
name=None
)
add_n¶
-
Sum one or more Tensor of the input.
For example:
Case 1: Input: input.shape = [2, 3] input = [[1, 2, 3], [4, 5, 6]] Output: output.shape = [2, 3] output = [[1, 2, 3], [4, 5, 6]] Case 2: Input: First input: input1.shape = [2, 3] Input1 = [[1, 2, 3], [4, 5, 6]] The second input: input2.shape = [2, 3] input2 = [[7, 8, 9], [10, 11, 12]] Output: output.shape = [2, 3] output = [[8, 10, 12], [14, 16, 18]]
- Parameters
-
inputs (Tensor|list[Tensor]|tuple[Tensor]) – A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent. Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64, complex64, complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the sum of input \(inputs\) , its shape and data types are consistent with \(inputs\).
Examples
>>> import paddle >>> input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32') >>> input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32') >>> output = paddle.add_n([input0, input1]) >>> output Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[8. , 10., 12.], [14., 16., 18.]])
-
addmm
(
x,
y,
beta=1.0,
alpha=1.0,
name=None
)
addmm¶
-
addmm
Perform matrix multiplication for input $x$ and $y$. $input$ is added to the final result. The equation is:
\[Out = alpha * x * y + beta * input\]$Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.
- Parameters
-
input (Tensor) – The input Tensor to be added to the final result.
x (Tensor) – The first input Tensor for matrix multiplication.
y (Tensor) – The second input Tensor for matrix multiplication.
beta (float, optional) – Coefficient of $input$, default is 1.
alpha (float, optional) – Coefficient of $x*y$, default is 1.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output Tensor of addmm.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.ones([2, 2]) >>> y = paddle.ones([2, 2]) >>> input = paddle.ones([2, 2]) >>> out = paddle.addmm(input=input, x=x, y=y, beta=0.5, alpha=5.0) >>> print(out) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[10.50000000, 10.50000000], [10.50000000, 10.50000000]])
-
addmm_
(
x,
y,
beta=1.0,
alpha=1.0,
name=None
)
addmm_¶
-
Inplace version of
addmm
API, the output Tensor will be inplaced with inputx
. Please refer to addmm.
-
all
(
axis=None,
keepdim=False,
name=None
)
all¶
-
Computes the
logical and
of tensor elements over the given dimension.- Parameters
-
x (Tensor) – An N-D Tensor, the input data type should be bool.
axis (int|list|tuple, optional) – The dimensions along which the
logical and
is compute. IfNone
, and all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Results the
logical and
on the specified axis of input Tensor x, it’s data type is bool. - Return type
-
Tensor
Examples
>>> import paddle >>> # x is a bool Tensor with following elements: >>> # [[True, False] >>> # [True, True]] >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32') >>> x Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 0], [1, 1]]) >>> x = paddle.cast(x, 'bool') >>> # out1 should be False >>> out1 = paddle.all(x) >>> out1 Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, False) >>> # out2 should be [True, False] >>> out2 = paddle.all(x, axis=0) >>> out2 Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False]) >>> # keepdim=False, out3 should be [False, True], out.shape should be (2,) >>> out3 = paddle.all(x, axis=-1) >>> out3 Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True ]) >>> # keepdim=True, out4 should be [[False], [True]], out.shape should be (2, 1) >>> out4 = paddle.all(x, axis=1, keepdim=True) >>> out4 Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True, [[False], [True ]])
-
allclose
(
y,
rtol=1e-05,
atol=1e-08,
equal_nan=False,
name=None
)
allclose¶
-
Check if all \(x\) and \(y\) satisfy the condition:
\[\left| x - y \right| \leq atol + rtol \times \left| y \right|\]elementwise, for all elements of \(x\) and \(y\). This is analogous to \(numpy.allclose\), namely that it returns \(True\) if two tensors are elementwise equal within a tolerance.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64.
y (Tensor) – The input tensor, it’s data type should be float16, float32, float64.
rtol (rtoltype, optional) – The relative tolerance. Default: \(1e-5\) .
atol (atoltype, optional) – The absolute tolerance. Default: \(1e-8\) .
equal_nan (bool, optional) – Whether to compare nan as equal. Default: False.
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
The output tensor, it’s data type is bool.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([10000., 1e-07]) >>> y = paddle.to_tensor([10000.1, 1e-08]) >>> result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan") >>> print(result1) Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, False) >>> result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan") >>> print(result2) Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, False) >>> x = paddle.to_tensor([1.0, float('nan')]) >>> y = paddle.to_tensor([1.0, float('nan')]) >>> result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan") >>> print(result1) Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, False) >>> result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan") >>> print(result2) Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, True)
-
amax
(
axis=None,
keepdim=False,
name=None
)
amax¶
-
Computes the maximum of tensor elements over the given axis.
Note
The difference between max and amax is: If there are multiple maximum elements, amax evenly distributes gradient between these equal values, while max propagates gradient to all of them.
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64, the dimension is no more than 4.
axis (int|list|tuple, optional) – The axis along which the maximum is computed. If
None
, compute the maximum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim(x), x.ndim(x))\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of maximum on the specified axis of input tensor, it’s data type is the same as x.
Examples
>>> import paddle >>> # data_x is a Tensor with shape [2, 4] with multiple maximum elements >>> # the axis is a int element >>> x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9], ... [0.9, 0.9, 0.6, 0.7]], ... dtype='float64', stop_gradient=False) >>> # There are 5 maximum elements: >>> # 1) amax evenly distributes gradient between these equal values, >>> # thus the corresponding gradients are 1/5=0.2; >>> # 2) while max propagates gradient to all of them, >>> # thus the corresponding gradient are 1. >>> result1 = paddle.amax(x) >>> result1.backward() >>> result1 Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False, 0.90000000) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0. , 0.20000000, 0.20000000, 0.20000000], [0.20000000, 0.20000000, 0. , 0. ]]) >>> x.clear_grad() >>> result1_max = paddle.max(x) >>> result1_max.backward() >>> result1_max Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False, 0.90000000) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0., 1., 1., 1.], [1., 1., 0., 0.]]) >>> x.clear_grad() >>> result2 = paddle.amax(x, axis=0) >>> result2.backward() >>> result2 Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False, [0.90000000, 0.90000000, 0.90000000, 0.90000000]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0. , 0.50000000, 1. , 1. ], [1. , 0.50000000, 0. , 0. ]]) >>> x.clear_grad() >>> result3 = paddle.amax(x, axis=-1) >>> result3.backward() >>> result3 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [0.90000000, 0.90000000]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0. , 0.33333333, 0.33333333, 0.33333333], [0.50000000, 0.50000000, 0. , 0. ]]) >>> x.clear_grad() >>> result4 = paddle.amax(x, axis=1, keepdim=True) >>> result4.backward() >>> result4 Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False, [[0.90000000], [0.90000000]]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0. , 0.33333333, 0.33333333, 0.33333333], [0.50000000, 0.50000000, 0. , 0. ]]) >>> # data_y is a Tensor with shape [2, 2, 2] >>> # the axis is list >>> y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]], ... [[0.9, 0.9], [0.6, 0.7]]], ... dtype='float64', stop_gradient=False) >>> result5 = paddle.amax(y, axis=[1, 2]) >>> result5.backward() >>> result5 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [0.90000000, 0.90000000]) >>> y.grad Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False, [[[0. , 0.33333333], [0.33333333, 0.33333333]], [[0.50000000, 0.50000000], [0. , 0. ]]]) >>> y.clear_grad() >>> result6 = paddle.amax(y, axis=[0, 1]) >>> result6.backward() >>> result6 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [0.90000000, 0.90000000]) >>> y.grad Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False, [[[0. , 0.33333333], [0.50000000, 0.33333333]], [[0.50000000, 0.33333333], [0. , 0. ]]])
-
amin
(
axis=None,
keepdim=False,
name=None
)
amin¶
-
Computes the minimum of tensor elements over the given axis
Note
The difference between min and amin is: If there are multiple minimum elements, amin evenly distributes gradient between these equal values, while min propagates gradient to all of them.
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64, the dimension is no more than 4.
axis (int|list|tuple, optional) – The axis along which the minimum is computed. If
None
, compute the minimum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim, x.ndim)\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of minimum on the specified axis of input tensor, it’s data type is the same as input’s Tensor.
Examples
>>> import paddle >>> # data_x is a Tensor with shape [2, 4] with multiple minimum elements >>> # the axis is a int element >>> x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1], ... [0.1, 0.1, 0.6, 0.7]], ... dtype='float64', stop_gradient=False) >>> # There are 5 minimum elements: >>> # 1) amin evenly distributes gradient between these equal values, >>> # thus the corresponding gradients are 1/5=0.2; >>> # 2) while min propagates gradient to all of them, >>> # thus the corresponding gradient are 1. >>> result1 = paddle.amin(x) >>> result1.backward() >>> result1 Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False, 0.10000000) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0. , 0.20000000, 0.20000000, 0.20000000], [0.20000000, 0.20000000, 0. , 0. ]]) >>> x.clear_grad() >>> result1_min = paddle.min(x) >>> result1_min.backward() >>> result1_min Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False, 0.10000000) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0., 1., 1., 1.], [1., 1., 0., 0.]]) >>> x.clear_grad() >>> result2 = paddle.amin(x, axis=0) >>> result2.backward() >>> result2 Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False, [0.10000000, 0.10000000, 0.10000000, 0.10000000]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0. , 0.50000000, 1. , 1. ], [1. , 0.50000000, 0. , 0. ]]) >>> x.clear_grad() >>> result3 = paddle.amin(x, axis=-1) >>> result3.backward() >>> result3 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [0.10000000, 0.10000000]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0. , 0.33333333, 0.33333333, 0.33333333], [0.50000000, 0.50000000, 0. , 0. ]]) >>> x.clear_grad() >>> result4 = paddle.amin(x, axis=1, keepdim=True) >>> result4.backward() >>> result4 Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False, [[0.10000000], [0.10000000]]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0. , 0.33333333, 0.33333333, 0.33333333], [0.50000000, 0.50000000, 0. , 0. ]]) >>> # data_y is a Tensor with shape [2, 2, 2] >>> # the axis is list >>> y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]], ... [[0.1, 0.1], [0.6, 0.7]]], ... dtype='float64', stop_gradient=False) >>> result5 = paddle.amin(y, axis=[1, 2]) >>> result5.backward() >>> result5 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [0.10000000, 0.10000000]) >>> y.grad Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False, [[[0. , 0.33333333], [0.33333333, 0.33333333]], [[0.50000000, 0.50000000], [0. , 0. ]]]) >>> y.clear_grad() >>> result6 = paddle.amin(y, axis=[0, 1]) >>> result6.backward() >>> result6 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [0.10000000, 0.10000000]) >>> y.grad Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False, [[[0. , 0.33333333], [0.50000000, 0.33333333]], [[0.50000000, 0.33333333], [0. , 0. ]]])
-
angle
(
name=None
)
angle¶
-
Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while for negative real numbers, the angle is \(\pi\).
- Equation:
-
\[angle(x)=arctan2(x.imag, x.real)\]
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor of real data type with the same precision as that of x’s data type.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32') >>> y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32') >>> z = x + 1j * y >>> z Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True, [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)], [(-1-2j), (-1-1j), (-1+0j), (-1+1j)], [-2j , -1j , 0j , 1j ], [ (1-2j), (1-1j), (1+0j), (1+1j)]]) >>> theta = paddle.angle(z) >>> theta Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[-2.35619450, -2.67794514, 3.14159274, 2.67794514], [-2.03444386, -2.35619450, 3.14159274, 2.35619450], [-1.57079637, -1.57079637, 0. , 1.57079637], [-1.10714877, -0.78539819, 0. , 0.78539819]])
-
any
(
axis=None,
keepdim=False,
name=None
)
any¶
-
Computes the
logical or
of tensor elements over the given dimension, and return the result.- Parameters
-
x (Tensor) – An N-D Tensor, the input data type should be bool.
axis (int|list|tuple, optional) – The dimensions along which the
logical or
is compute. IfNone
, and all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Results the
logical or
on the specified axis of input Tensor x, it’s data type is bool. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32') >>> x = paddle.assign(x) >>> x Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 0], [1, 1]]) >>> x = paddle.cast(x, 'bool') >>> # x is a bool Tensor with following elements: >>> # [[True, False] >>> # [True, True]] >>> # out1 should be True >>> out1 = paddle.any(x) >>> out1 Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, True) >>> # out2 should be [True, True] >>> out2 = paddle.any(x, axis=0) >>> out2 Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True, True]) >>> # keepdim=False, out3 should be [True, True], out.shape should be (2,) >>> out3 = paddle.any(x, axis=-1) >>> out3 Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True, True]) >>> # keepdim=True, result should be [[True], [True]], out.shape should be (2,1) >>> out4 = paddle.any(x, axis=1, keepdim=True) >>> out4 Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True, [[True], [True]])
-
append
(
var
)
append¶
-
Note
The type variable must be LoD Tensor Array.
-
argmax
(
axis=None,
keepdim=False,
dtype='int64',
name=None
)
argmax¶
-
Computes the indices of the max elements of the input tensor’s element along the provided axis.
- Parameters
-
x (Tensor) – An input N-D Tensor with type float16, float32, float64, int16, int32, int64, uint8.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is None, the input x will be into the flatten tensor, and selecting the min value index.
keepdim (bool, optional) – Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimensions is one fewer than x since the axis is squeezed. Default is False.
dtype (str|np.dtype, optional) – Data type of the output tensor which can be int32, int64. The default value is
int64
, and it will return the int64 indices.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, return the tensor of int32 if set
dtype
is int32, otherwise return the tensor of int64.
Examples
>>> import paddle >>> x = paddle.to_tensor([[5,8,9,5], ... [0,0,1,7], ... [6,9,2,4]]) >>> out1 = paddle.argmax(x) >>> print(out1.numpy()) 2 >>> out2 = paddle.argmax(x, axis=0) >>> print(out2.numpy()) [2 2 0 1] >>> out3 = paddle.argmax(x, axis=-1) >>> print(out3.numpy()) [2 3 1] >>> out4 = paddle.argmax(x, axis=0, keepdim=True) >>> print(out4.numpy()) [[2 2 0 1]]
-
argmin
(
axis=None,
keepdim=False,
dtype='int64',
name=None
)
argmin¶
-
Computes the indices of the min elements of the input tensor’s element along the provided axis.
- Parameters
-
x (Tensor) – An input N-D Tensor with type float16, float32, float64, int16, int32, int64, uint8.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is None, the input x will be into the flatten tensor, and selecting the min value index.
keepdim (bool, optional) – Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimensions is one fewer than x since the axis is squeezed. Default is False.
dtype (str, optional) – Data type of the output tensor which can be int32, int64. The default value is ‘int64’, and it will return the int64 indices.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, return the tensor of int32 if set
dtype
is int32, otherwise return the tensor of int64.
Examples
>>> import paddle >>> x = paddle.to_tensor([[5,8,9,5], ... [0,0,1,7], ... [6,9,2,4]]) >>> out1 = paddle.argmin(x) >>> print(out1.numpy()) 4 >>> out2 = paddle.argmin(x, axis=0) >>> print(out2.numpy()) [1 1 1 2] >>> out3 = paddle.argmin(x, axis=-1) >>> print(out3.numpy()) [0 0 2] >>> out4 = paddle.argmin(x, axis=0, keepdim=True) >>> print(out4.numpy()) [[1 1 1 2]]
-
argsort
(
axis=- 1,
descending=False,
stable=False,
name=None
)
argsort¶
-
Sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the
descending
as True.- Parameters
-
x (Tensor) – An input N-D Tensor with type bfloat16, float16, float32, float64, int16, int32, int64, uint8.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is -1.
descending (bool, optional) – Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false.
stable (bool, optional) – Whether to use stable sorting algorithm or not. When using stable sorting algorithm, the order of equivalent elements will be preserved. Default is False.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
sorted indices(with the same shape as
x
and with data type int64). - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[[5,8,9,5], ... [0,0,1,7], ... [6,9,2,4]], ... [[5,2,4,2], ... [4,7,7,9], ... [1,7,0,6]]], ... dtype='float32') >>> out1 = paddle.argsort(x, axis=-1) >>> out2 = paddle.argsort(x, axis=0) >>> out3 = paddle.argsort(x, axis=1) >>> print(out1) Tensor(shape=[2, 3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[[0, 3, 1, 2], [0, 1, 2, 3], [2, 3, 0, 1]], [[1, 3, 2, 0], [0, 1, 2, 3], [2, 0, 3, 1]]]) >>> print(out2) Tensor(shape=[2, 3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[[0, 1, 1, 1], [0, 0, 0, 0], [1, 1, 1, 0]], [[1, 0, 0, 0], [1, 1, 1, 1], [0, 0, 0, 1]]]) >>> print(out3) Tensor(shape=[2, 3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[[1, 1, 1, 2], [0, 0, 2, 0], [2, 2, 0, 1]], [[2, 0, 2, 0], [1, 1, 0, 2], [0, 2, 1, 1]]]) >>> x = paddle.to_tensor([1, 0]*40, dtype='float32') >>> out1 = paddle.argsort(x, stable=False) >>> out2 = paddle.argsort(x, stable=True) >>> print(out1) Tensor(shape=[80], dtype=int64, place=Place(cpu), stop_gradient=True, [55, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 1 , 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 17, 11, 13, 25, 7 , 3 , 27, 23, 19, 15, 5 , 21, 9 , 10, 64, 62, 68, 60, 58, 8 , 66, 14, 6 , 70, 72, 4 , 74, 76, 2 , 78, 0 , 20, 28, 26, 30, 32, 24, 34, 36, 22, 38, 40, 12, 42, 44, 18, 46, 48, 16, 50, 52, 54, 56]) >>> print(out2) Tensor(shape=[80], dtype=int64, place=Place(cpu), stop_gradient=True, [1 , 3 , 5 , 7 , 9 , 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 0 , 2 , 4 , 6 , 8 , 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78])
-
as_complex
(
name=None
)
as_complex¶
-
Transform a real tensor to a complex tensor.
The data type of the input tensor is ‘float32’ or ‘float64’, and the data type of the returned tensor is ‘complex64’ or ‘complex128’, respectively.
The shape of the input tensor is
(* ,2)
, (*
means arbitrary shape), i.e. the size of the last axis should be 2, which represent the real and imag part of a complex number. The shape of the returned tensor is(*,)
.- Parameters
-
x (Tensor) – The input tensor. Data type is ‘float32’ or ‘float64’.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, The output. Data type is ‘complex64’ or ‘complex128’, with the same precision as the input.
Examples
>>> import paddle >>> x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2]) >>> y = paddle.as_complex(x) >>> print(y) Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True, [[1j , (2+3j) , (4+5j) ], [(6+7j) , (8+9j) , (10+11j)]])
-
as_real
(
name=None
)
as_real¶
-
Transform a complex tensor to a real tensor.
The data type of the input tensor is ‘complex64’ or ‘complex128’, and the data type of the returned tensor is ‘float32’ or ‘float64’, respectively.
When the shape of the input tensor is
(*, )
, (*
means arbitrary shape), the shape of the output tensor is(*, 2)
, i.e. the shape of the output is the shape of the input appended by an extra2
.- Parameters
-
x (Tensor) – The input tensor. Data type is ‘complex64’ or ‘complex128’.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, The output. Data type is ‘float32’ or ‘float64’, with the same precision as the input.
Examples
>>> import paddle >>> x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2]) >>> y = paddle.as_complex(x) >>> z = paddle.as_real(y) >>> print(z) Tensor(shape=[2, 3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[[0. , 1. ], [2. , 3. ], [4. , 5. ]], [[6. , 7. ], [8. , 9. ], [10., 11.]]])
-
as_strided
(
shape,
stride,
offset=0,
name=None
)
as_strided¶
-
View x with specified shape, stride and offset.
Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode.- Parameters
-
x (Tensor) – An N-D Tensor. The data type is
float32
,float64
,int32
,int64
orbool
shape (list|tuple) – Define the target shape. Each element of it should be integer.
stride (list|tuple) – Define the target stride. Each element of it should be integer.
offset (int) – Define the target Tensor’s offset from x’s holder. Default: 0.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A as_strided Tensor with the same data type as
x
.
Examples
>>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.as_strided(x, [8, 6], [6, 1]) >>> print(out.shape) [8, 6] >>> # the stride is [6, 1].
-
asin
(
name=None
)
asin¶
-
Arcsine Operator.
\[out = sin^{-1}(x)\]- Parameters
-
x (Tensor) – Input of Asin operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Same shape and dtype as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.asin(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.41151685, -0.20135793, 0.10016742, 0.30469266])
-
asin_
(
name=None
)
asin_¶
-
Inplace version of
asin
API, the output Tensor will be inplaced with inputx
. Please refer to asin.
-
asinh
(
name=None
)
asinh¶
-
Asinh Activation Operator.
\[out = asinh(x)\]- Parameters
-
x (Tensor) – Input of Asinh operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Asinh operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.asinh(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.39003533, -0.19869010, 0.09983408, 0.29567307])
-
asinh_
(
name=None
)
asinh_¶
-
Inplace version of
asinh
API, the output Tensor will be inplaced with inputx
. Please refer to asinh.
-
astype
(
dtype
)
astype¶
-
- Notes:
-
The variable must be a Tensor
Cast a variable to a specified data type.
- Parameters
-
self (Variable) – The source variable
dtype – The target data type
- Returns
-
Variable with new dtype
- Return type
-
Variable
Examples
In Static Graph Mode:
>>> import paddle >>> import paddle.base as base >>> paddle.enable_static() >>> startup_prog = paddle.static.Program() >>> main_prog = paddle.static.Program() >>> with base.program_guard(startup_prog, main_prog): ... original_variable = paddle.static.data(name = "new_variable", shape=[2,2], dtype='float32') ... new_variable = original_variable.astype('int64') ... print("new var's dtype is: {}".format(new_variable.dtype)) ... new var's dtype is: paddle.int64
In Dygraph Mode:
>>> import paddle.base as base >>> import paddle >>> import numpy as np >>> x = np.ones([2, 2], np.float32) >>> with base.dygraph.guard(): ... original_variable = paddle.to_tensor(x) ... print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype)) ... new_variable = original_variable.astype('int64') ... print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype)) ... original var's dtype is: paddle.float32, numpy dtype is float32 new var's dtype is: paddle.int64, numpy dtype is int64
-
atan
(
name=None
)
atan¶
-
Arctangent Operator.
\[out = tan^{-1}(x)\]- Parameters
-
x (Tensor) – Input of Atan operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Same shape and dtype as input x.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.atan(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.38050640, -0.19739556, 0.09966865, 0.29145682])
-
atan2
(
y,
name=None
)
atan2¶
-
Element-wise arctangent of x/y with consideration of the quadrant.
- Equation:
-
\[\begin{split}atan2(x,y)=\left\{\begin{matrix} & tan^{-1}(\frac{x}{y}) & y > 0 \\ & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\ & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\ & +\frac{\pi}{2} & x>0, y = 0 \\ & -\frac{\pi}{2} & x<0, y = 0 \\ &\text{undefined} & x=0, y = 0 \end{matrix}\right.\end{split}\]
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is int32, int64, float16, float32, float64.
y (Tensor) – An N-D Tensor, must have the same type as x.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32') >>> x Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-1, 1, 1, -1]) >>> y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32') >>> y Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-1, -1, 1, 1]) >>> out = paddle.atan2(x, y) >>> out Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-2.35619450, 2.35619450, 0.78539819, -0.78539819])
-
atan_
(
name=None
)
atan_¶
-
Inplace version of
atan
API, the output Tensor will be inplaced with inputx
. Please refer to atan.
-
atanh
(
name=None
)
atanh¶
-
Atanh Activation Operator.
\[out = atanh(x)\]- Parameters
-
x (Tensor) – Input of Atan operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Atanh operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.atanh(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.42364895, -0.20273255, 0.10033534, 0.30951962])
-
atanh_
(
name=None
)
atanh_¶
-
Inplace version of
atanh
API, the output Tensor will be inplaced with inputx
. Please refer to atanh.
-
atleast_1d
(
*,
name=None
)
atleast_1d¶
-
Convert inputs to tensors and return the view with at least 1-dimension. Scalar inputs are converted, one or high-dimensional inputs are preserved.
- Parameters
-
inputs (Tensor|list(Tensor)) – One or more tensors. The data type is
float16
,float32
,float64
,int16
,int32
,int64
,int8
,uint8
,complex64
,complex128
,bfloat16
orbool
.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
One Tensor, if there is only one input. List of Tensors, if there are more than one inputs.
Examples
>>> import paddle >>> # one input >>> x = paddle.to_tensor(123, dtype='int32') >>> out = paddle.atleast_1d(x) >>> print(out) Tensor(shape=[1], dtype=int32, place=Place(cpu), stop_gradient=True, [123]) >>> # more than one inputs >>> x = paddle.to_tensor(123, dtype='int32') >>> y = paddle.to_tensor([1.23], dtype='float32') >>> out = paddle.atleast_1d(x, y) >>> print(out) [Tensor(shape=[1], dtype=int32, place=Place(cpu), stop_gradient=True, [123]), Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [1.23000002])] >>> # more than 1-D input >>> x = paddle.to_tensor(123, dtype='int32') >>> y = paddle.to_tensor([[1.23]], dtype='float32') >>> out = paddle.atleast_1d(x, y) >>> print(out) [Tensor(shape=[1], dtype=int32, place=Place(cpu), stop_gradient=True, [123]), Tensor(shape=[1, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.23000002]])]
-
atleast_2d
(
*,
name=None
)
atleast_2d¶
-
Convert inputs to tensors and return the view with at least 2-dimension. Two or high-dimensional inputs are preserved.
- Parameters
-
inputs (Tensor|list(Tensor)) – One or more tensors. The data type is
float16
,float32
,float64
,int16
,int32
,int64
,int8
,uint8
,complex64
,complex128
,bfloat16
orbool
.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
One Tensor, if there is only one input. List of Tensors, if there are more than one inputs.
Examples
>>> import paddle >>> # one input >>> x = paddle.to_tensor(123, dtype='int32') >>> out = paddle.atleast_2d(x) >>> print(out) Tensor(shape=[1, 1], dtype=int32, place=Place(cpu), stop_gradient=True, [[123]]) >>> # more than one inputs >>> x = paddle.to_tensor(123, dtype='int32') >>> y = paddle.to_tensor([1.23], dtype='float32') >>> out = paddle.atleast_2d(x, y) >>> print(out) [Tensor(shape=[1, 1], dtype=int32, place=Place(cpu), stop_gradient=True, [[123]]), Tensor(shape=[1, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.23000002]])] >>> # more than 2-D input >>> x = paddle.to_tensor(123, dtype='int32') >>> y = paddle.to_tensor([[[1.23]]], dtype='float32') >>> out = paddle.atleast_2d(x, y) >>> print(out) [Tensor(shape=[1, 1], dtype=int32, place=Place(cpu), stop_gradient=True, [[123]]), Tensor(shape=[1, 1, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[[1.23000002]]])]
-
atleast_3d
(
*,
name=None
)
atleast_3d¶
-
Convert inputs to tensors and return the view with at least 3-dimension. Three or high-dimensional inputs are preserved.
- Parameters
-
inputs (Tensor|list(Tensor)) – One or more tensors. The data type is
float16
,float32
,float64
,int16
,int32
,int64
,int8
,uint8
,complex64
,complex128
,bfloat16
orbool
.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
One Tensor, if there is only one input. List of Tensors, if there are more than one inputs.
Examples
>>> import paddle >>> # one input >>> x = paddle.to_tensor(123, dtype='int32') >>> out = paddle.atleast_3d(x) >>> print(out) Tensor(shape=[1, 1, 1], dtype=int32, place=Place(cpu), stop_gradient=True, [[[123]]]) >>> # more than one inputs >>> x = paddle.to_tensor(123, dtype='int32') >>> y = paddle.to_tensor([1.23], dtype='float32') >>> out = paddle.atleast_3d(x, y) >>> print(out) [Tensor(shape=[1, 1, 1], dtype=int32, place=Place(cpu), stop_gradient=True, [[[123]]]), Tensor(shape=[1, 1, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[[1.23000002]]])] >>> # more than 3-D input >>> x = paddle.to_tensor(123, dtype='int32') >>> y = paddle.to_tensor([[[[1.23]]]], dtype='float32') >>> out = paddle.atleast_3d(x, y) >>> print(out) [Tensor(shape=[1, 1, 1], dtype=int32, place=Place(cpu), stop_gradient=True, [[[123]]]), Tensor(shape=[1, 1, 1, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[[[1.23000002]]]])]
-
bernoulli_
(
p=0.5,
name=None
)
bernoulli_¶
-
This is the inplace version of api
bernoulli
, which returns a Tensor filled with random values sampled from a bernoulli distribution. The output Tensor will be inplaced with inputx
. Please refer to bernoulli.- Parameters
-
x (Tensor) – The input tensor to be filled with random values.
p (float|Tensor, optional) – The success probability parameter of the output Tensor’s bernoulli distribution. If
p
is float, all elements of the output Tensor shared the same success probability. Ifp
is a Tensor, it has per-element success probabilities, and the shape should be broadcastable tox
. Default is 0.5name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor filled with random values sampled from the bernoulli distribution with success probability
p
.
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> paddle.seed(200) >>> x = paddle.randn([3, 4]) >>> x.bernoulli_() >>> print(x) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 0., 1.], [1., 1., 0., 1.], [0., 1., 0., 0.]]) >>> x = paddle.randn([3, 4]) >>> p = paddle.randn([3, 1]) >>> x.bernoulli_(p) >>> print(x) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 1., 1., 1.], [0., 0., 0., 0.], [0., 0., 0., 0.]])
-
bincount
(
weights=None,
minlength=0,
name=None
)
bincount¶
-
Computes frequency of each value in the input tensor.
- Parameters
-
x (Tensor) – A Tensor with non-negative integer. Should be 1-D tensor.
weights (Tensor, optional) – Weight for each value in the input tensor. Should have the same shape as input. Default is None.
minlength (int, optional) – Minimum number of bins. Should be non-negative integer. Default is 0.
name (str, optional) – Normally there is no need for user to set this property. For more information, please refer to Name. Default is None.
- Returns
-
The tensor of frequency.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 1, 4, 5]) >>> result1 = paddle.bincount(x) >>> print(result1) Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 2, 1, 0, 1, 1]) >>> w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5]) >>> result2 = paddle.bincount(x, weights=w) >>> print(result2) Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True, [0. , 2.19999981, 0.40000001, 0. , 0.50000000, 0.50000000])
-
bitwise_and
(
y,
out=None,
name=None
)
bitwise_and¶
-
Apply
bitwise_and
on TensorX
andY
.\[Out = X \& Y\]Note
paddle.bitwise_and
supports broadcasting. If you want know more about broadcasting, please refer to please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – Input Tensor of
bitwise_and
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.y (Tensor) – Input Tensor of
bitwise_and
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.out (Tensor, optional) – Result of
bitwise_and
. It is a N-D Tensor with the same data type of input Tensor. Default: None.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Result of
bitwise_and
. It is a N-D Tensor with the same data type of input Tensor. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([-5, -1, 1]) >>> y = paddle.to_tensor([4, 2, -3]) >>> res = paddle.bitwise_and(x, y) >>> print(res) Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 2, 1])
-
bitwise_and_
(
y,
name=None
)
bitwise_and_¶
-
Inplace version of
bitwise_and
API, the output Tensor will be inplaced with inputx
. Please refer to bitwise_and.
-
bitwise_left_shift
(
y,
is_arithmetic=True,
out=None,
name=None
)
bitwise_left_shift¶
-
Apply
bitwise_left_shift
on TensorX
andY
.\[Out = X \ll Y\]Note
paddle.bitwise_left_shift
supports broadcasting. If you want know more about broadcasting, please refer to please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – Input Tensor of
bitwise_left_shift
. It is a N-D Tensor of uint8, int8, int16, int32, int64.y (Tensor) – Input Tensor of
bitwise_left_shift
. It is a N-D Tensor of uint8, int8, int16, int32, int64.is_arithmetic (bool, optional) – A boolean indicating whether to choose arithmetic shift, if False, means logic shift. Default True.
out (Tensor, optional) – Result of
bitwise_left_shift
. It is a N-D Tensor with the same data type of input Tensor. Default: None.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Result of
bitwise_left_shift
. It is a N-D Tensor with the same data type of input Tensor. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[1,2,4,8],[16,17,32,65]]) >>> y = paddle.to_tensor([[1,2,3,4,], [2,3,2,1]]) >>> paddle.bitwise_left_shift(x, y, is_arithmetic=True) Tensor(shape=[2, 4], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[2 , 8 , 32 , 128], [64 , 136, 128, 130]])
>>> import paddle >>> x = paddle.to_tensor([[1,2,4,8],[16,17,32,65]]) >>> y = paddle.to_tensor([[1,2,3,4,], [2,3,2,1]]) >>> paddle.bitwise_left_shift(x, y, is_arithmetic=False) Tensor(shape=[2, 4], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[2 , 8 , 32 , 128], [64 , 136, 128, 130]])
-
bitwise_left_shift_
(
y,
is_arithmetic=True,
out=None,
name=None
)
bitwise_left_shift_¶
-
Inplace version of
bitwise_left_shift
API, the output Tensor will be inplaced with inputx
. Please refer to bitwise_left_shift.
-
bitwise_not
(
out=None,
name=None
)
bitwise_not¶
-
Apply
bitwise_not
on TensorX
.\[Out = \sim X\]Note
paddle.bitwise_not
supports broadcasting. If you want know more about broadcasting, please refer to please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – Input Tensor of
bitwise_not
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.out (Tensor, optional) – Result of
bitwise_not
. It is a N-D Tensor with the same data type of input Tensor. Default: None.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Result of
bitwise_not
. It is a N-D Tensor with the same data type of input Tensor. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([-5, -1, 1]) >>> res = paddle.bitwise_not(x) >>> print(res) Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [ 4, 0, -2])
-
bitwise_not_
(
name=None
)
bitwise_not_¶
-
Inplace version of
bitwise_not
API, the output Tensor will be inplaced with inputx
. Please refer to bitwise_not.
-
bitwise_or
(
y,
out=None,
name=None
)
bitwise_or¶
-
Apply
bitwise_or
on TensorX
andY
.\[Out = X | Y\]Note
paddle.bitwise_or
supports broadcasting. If you want know more about broadcasting, please refer to please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – Input Tensor of
bitwise_or
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.y (Tensor) – Input Tensor of
bitwise_or
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.out (Tensor, optional) – Result of
bitwise_or
. It is a N-D Tensor with the same data type of input Tensor. Default: None.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Result of
bitwise_or
. It is a N-D Tensor with the same data type of input Tensor. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([-5, -1, 1]) >>> y = paddle.to_tensor([4, 2, -3]) >>> res = paddle.bitwise_or(x, y) >>> print(res) Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [-1, -1, -3])
-
bitwise_or_
(
y,
name=None
)
bitwise_or_¶
-
Inplace version of
bitwise_or
API, the output Tensor will be inplaced with inputx
. Please refer to bitwise_or.
-
bitwise_right_shift
(
y,
is_arithmetic=True,
out=None,
name=None
)
bitwise_right_shift¶
-
Apply
bitwise_right_shift
on TensorX
andY
.\[Out = X \gg Y\]Note
paddle.bitwise_right_shift
supports broadcasting. If you want know more about broadcasting, please refer to please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – Input Tensor of
bitwise_right_shift
. It is a N-D Tensor of uint8, int8, int16, int32, int64.y (Tensor) – Input Tensor of
bitwise_right_shift
. It is a N-D Tensor of uint8, int8, int16, int32, int64.is_arithmetic (bool, optional) – A boolean indicating whether to choose arithmetic shift, if False, means logic shift. Default True.
out (Tensor, optional) – Result of
bitwise_right_shift
. It is a N-D Tensor with the same data type of input Tensor. Default: None.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Result of
bitwise_right_shift
. It is a N-D Tensor with the same data type of input Tensor. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[10,20,40,80],[16,17,32,65]]) >>> y = paddle.to_tensor([[1,2,3,4,], [2,3,2,1]]) >>> paddle.bitwise_right_shift(x, y, is_arithmetic=True) Tensor(shape=[2, 4], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[5 , 5 , 5 , 5 ], [4 , 2 , 8 , 32]])
>>> import paddle >>> x = paddle.to_tensor([[-10,-20,-40,-80],[-16,-17,-32,-65]], dtype=paddle.int8) >>> y = paddle.to_tensor([[1,2,3,4,], [2,3,2,1]], dtype=paddle.int8) >>> paddle.bitwise_right_shift(x, y, is_arithmetic=False) # logic shift Tensor(shape=[2, 4], dtype=int8, place=Place(gpu:0), stop_gradient=True, [[123, 59 , 27 , 11 ], [60 , 29 , 56 , 95 ]])
-
bitwise_right_shift_
(
y,
is_arithmetic=True,
out=None,
name=None
)
bitwise_right_shift_¶
-
Inplace version of
bitwise_right_shift
API, the output Tensor will be inplaced with inputx
. Please refer to bitwise_left_shift.
-
bitwise_xor
(
y,
out=None,
name=None
)
bitwise_xor¶
-
Apply
bitwise_xor
on TensorX
andY
.\[Out = X ^\wedge Y\]Note
paddle.bitwise_xor
supports broadcasting. If you want know more about broadcasting, please refer to please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – Input Tensor of
bitwise_xor
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.y (Tensor) – Input Tensor of
bitwise_xor
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.out (Tensor, optional) – Result of
bitwise_xor
. It is a N-D Tensor with the same data type of input Tensor. Default: None.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Result of
bitwise_xor
. It is a N-D Tensor with the same data type of input Tensor. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([-5, -1, 1]) >>> y = paddle.to_tensor([4, 2, -3]) >>> res = paddle.bitwise_xor(x, y) >>> print(res) Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [-1, -3, -4])
-
bitwise_xor_
(
y,
name=None
)
bitwise_xor_¶
-
Inplace version of
bitwise_xor
API, the output Tensor will be inplaced with inputx
. Please refer to bitwise_xor.
-
block_diag
(
name=None
)
block_diag¶
-
Create a block diagonal matrix from provided tensors.
- Parameters
-
inputs (list|tuple) –
inputs
is a Tensor list or Tensor tuple, one or more tensors with 0, 1, or 2 dimensions.name (str, optional) – Name for the operation (optional, default is None).
- Returns
-
Tensor, A
Tensor
. The data type is same asinputs
.
Examples
>>> import paddle >>> A = paddle.to_tensor([[4], [3], [2]]) >>> B = paddle.to_tensor([7, 6, 5]) >>> C = paddle.to_tensor(1) >>> D = paddle.to_tensor([[5, 4, 3], [2, 1, 0]]) >>> E = paddle.to_tensor([[8, 7], [7, 8]]) >>> out = paddle.block_diag([A, B, C, D, E]) >>> print(out) Tensor(shape=[9, 10], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 7, 6, 5, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 5, 4, 3, 0, 0], [0, 0, 0, 0, 0, 2, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 8, 7], [0, 0, 0, 0, 0, 0, 0, 0, 7, 8]])
-
bmm
(
y,
name=None
)
bmm¶
-
Applies batched matrix multiplication to two tensors.
Both of the two input tensors must be three-dimensional and share the same batch size.
If x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.
- Parameters
-
x (Tensor) – The input Tensor.
y (Tensor) – The input Tensor.
name (str|None) – A name for this layer(optional). If set None, the layer will be named automatically. Default: None.
- Returns
-
The product Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> # In imperative mode: >>> # size x: (2, 2, 3) and y: (2, 3, 2) >>> x = paddle.to_tensor([[[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]], ... [[3.0, 3.0, 3.0], ... [4.0, 4.0, 4.0]]]) >>> y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]], ... [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]]) >>> out = paddle.bmm(x, y) >>> print(out) Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[[6. , 6. ], [12., 12.]], [[45., 45.], [60., 60.]]])
-
broadcast_shape
(
y_shape
)
broadcast_shape¶
-
The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.
Note
If you want know more about broadcasting, please refer to Introduction to Tensor .
- Parameters
-
x_shape (list[int]|tuple[int]) – A shape of tensor.
y_shape (list[int]|tuple[int]) – A shape of tensor.
- Returns
-
list[int], the result shape.
Examples
>>> import paddle >>> shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1]) >>> shape [2, 3, 3] >>> # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1]) >>> # ValueError (terminated with error message).
-
broadcast_tensors
(
name=None
)
broadcast_tensors¶
-
Broadcast a list of tensors following broadcast semantics
Note
If you want know more about broadcasting, please refer to Introduction to Tensor .
- Parameters
-
input (list|tuple) –
input
is a Tensor list or Tensor tuple which is with data type bool, float16, float32, float64, int32, int64, complex64, complex128. All the Tensors ininput
must have same data type. Currently we only support tensors with rank no greater than 5.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
list(Tensor), The list of broadcasted tensors following the same order as
input
.
Examples
>>> import paddle >>> x1 = paddle.rand([1, 2, 3, 4]).astype('float32') >>> x2 = paddle.rand([1, 2, 1, 4]).astype('float32') >>> x3 = paddle.rand([1, 1, 3, 1]).astype('float32') >>> out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3]) >>> # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
-
broadcast_to
(
shape,
name=None
)
broadcast_to¶
-
Broadcast the input tensor to a given shape.
Both the number of dimensions of
x
and the number of elements inshape
should be less than or equal to 6. The dimension to broadcast to must have a value 0.- Parameters
-
x (Tensor) – The input tensor, its data type is bool, float16, float32, float64, int32, int64, uint8 or uint16.
shape (list|tuple|Tensor) – The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. The value -1 in shape means keeping the corresponding dimension unchanged.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor, A Tensor with the given shape. The data type is the same as
x
.
Examples
>>> import paddle >>> data = paddle.to_tensor([1, 2, 3], dtype='int32') >>> out = paddle.broadcast_to(data, shape=[2, 3]) >>> print(out) Tensor(shape=[2, 3], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3], [1, 2, 3]])
-
bucketize
(
sorted_sequence,
out_int32=False,
right=False,
name=None
)
bucketize¶
-
This API is used to find the index of the corresponding 1D tensor sorted_sequence in the innermost dimension based on the given x.
- Parameters
-
x (Tensor) – An input N-D tensor value with type int32, int64, float32, float64.
sorted_sequence (Tensor) – An input 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension.
out_int32 (bool, optional) – Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
right (bool, optional) – Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given x. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension. The default value is False and it shows the lower bounds.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Tensor (the same sizes of the x), return the tensor of int32 if set
out_int32
is True, otherwise return the tensor of int64.
Examples
>>> import paddle >>> sorted_sequence = paddle.to_tensor([2, 4, 8, 16], dtype='int32') >>> x = paddle.to_tensor([[0, 8, 4, 16], [-1, 2, 8, 4]], dtype='int32') >>> out1 = paddle.bucketize(x, sorted_sequence) >>> print(out1) Tensor(shape=[2, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 2, 1, 3], [0, 0, 2, 1]]) >>> out2 = paddle.bucketize(x, sorted_sequence, right=True) >>> print(out2) Tensor(shape=[2, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 3, 2, 4], [0, 1, 3, 2]]) >>> out3 = x.bucketize(sorted_sequence) >>> print(out3) Tensor(shape=[2, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 2, 1, 3], [0, 0, 2, 1]]) >>> out4 = x.bucketize(sorted_sequence, right=True) >>> print(out4) Tensor(shape=[2, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 3, 2, 4], [0, 1, 3, 2]])
-
cast
(
dtype
)
cast¶
-
Take in the Tensor
x
withx.dtype
and cast it to the output withdtype
. It’s meaningless if the output dtype equals the input dtype, but it’s fine if you do so.- Parameters
-
x (Tensor) – An input N-D Tensor with data type bool, float16, float32, float64, int32, int64, uint8.
dtype (np.dtype|str) – Data type of the output: bool, float16, float32, float64, int8, int32, int64, uint8.
- Returns
-
Tensor, A Tensor with the same shape as input’s.
Examples
>>> import paddle >>> x = paddle.to_tensor([2, 3, 4], 'float64') >>> y = paddle.cast(x, 'uint8')
-
cast_
(
dtype
)
cast_¶
-
Inplace version of
cast
API, the output Tensor will be inplaced with inputx
. Please refer to cast.
-
cauchy_
(
loc=0,
scale=1,
name=None
)
cauchy_¶
-
Fills the tensor with numbers drawn from the Cauchy distribution.
- Parameters
-
x (Tensor) – the tensor will be filled, The data type is float32 or float64.
loc (scalar, optional) – Location of the peak of the distribution. The data type is float32 or float64.
scale (scalar, optional) – The half-width at half-maximum (HWHM). The data type is float32 or float64. Must be positive values.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
input tensor with numbers drawn from the Cauchy distribution.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.randn([3, 4]) >>> x.cauchy_(1, 2) >>> >>> print(x) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 3.80087137, 2.25415039, 2.77960515, 7.64125967], [ 0.76541221, 2.74023032, 1.99383152, -0.12685823], [ 1.45228469, 1.76275957, -4.30458832, 34.74880219]])
-
cdist
(
y,
p=2.0,
compute_mode='use_mm_for_euclid_dist_if_necessary',
name=None
)
cdist¶
-
Compute the p-norm distance between each pair of the two collections of inputs.
This function is equivalent to scipy.spatial.distance.cdist(input,’minkowski’, p=p) if \(p \in (0, \infty)\). When \(p = 0\) it is equivalent to scipy.spatial.distance.cdist(input, ‘hamming’) * M. When \(p = \infty\), the closest scipy function is scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max()).
- Parameters
-
x (Tensor) – A tensor with shape \(B \times P \times M\).
y (Tensor) – A tensor with shape \(B \times R \times M\).
p (float, optional) – The value for the p-norm distance to calculate between each vector pair. Default: \(2.0\).
compute_mode (str, optional) –
The mode for compute distance.
use_mm_for_euclid_dist_if_necessary
, for p = 2.0 and (P > 25 or R > 25), it will use matrix multiplication to calculate euclid distance if possible.use_mm_for_euclid_dist
, for p = 2.0, it will use matrix multiplication to calculate euclid distance.donot_use_mm_for_euclid_dist
, it will not use matrix multiplication to calculate euclid distance.
Default:
use_mm_for_euclid_dist_if_necessary
.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, the dtype is same as input tensor.
If x has shape \(B \times P \times M\) and y has shape \(B \times R \times M\) then the output will have shape \(B \times P \times R\).
Examples
>>> import paddle >>> x = paddle.to_tensor([[0.9041, 0.0196], [-0.3108, -2.4423], [-0.4821, 1.059]], dtype=paddle.float32) >>> y = paddle.to_tensor([[-2.1763, -0.4713], [-0.6986, 1.3702]], dtype=paddle.float32) >>> distance = paddle.cdist(x, y) >>> print(distance) Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[3.11927032, 2.09589314], [2.71384072, 3.83217239], [2.28300953, 0.37910119]])
-
ceil
(
name=None
)
ceil¶
-
Ceil Operator. Computes ceil of x element-wise.
\[out = \left \lceil x \right \rceil\]- Parameters
-
x (Tensor) – Input of Ceil operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Ceil operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.ceil(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0., -0., 1. , 1. ])
-
ceil_
(
name=None
)
ceil_¶
-
Inplace version of
ceil
API, the output Tensor will be inplaced with inputx
. Please refer to ceil.
-
cholesky
(
upper=False,
name=None
)
cholesky¶
-
Computes the Cholesky decomposition of one symmetric positive-definite matrix or batches of symmetric positive-definite matrices.
If upper is True, the decomposition has the form \(A = U^{T}U\) , and the returned matrix \(U\) is upper-triangular. Otherwise, the decomposition has the form \(A = LL^{T}\) , and the returned matrix \(L\) is lower-triangular.
- Parameters
-
x (Tensor) – The input tensor. Its shape should be [*, M, M], where * is zero or more batch dimensions, and matrices on the inner-most 2 dimensions all should be symmetric positive-definite. Its data type should be float32 or float64.
upper (bool, optional) – The flag indicating whether to return upper or lower triangular matrices. Default: False.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A Tensor with same shape and data type as x. It represents triangular matrices generated by Cholesky decomposition.
Examples
>>> import paddle >>> paddle.seed(2023) >>> a = paddle.rand([3, 3], dtype="float32") >>> a_t = paddle.transpose(a, [1, 0]) >>> x = paddle.matmul(a, a_t) + 1e-03 >>> out = paddle.linalg.cholesky(x, upper=False) >>> print(out) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.04337072, 0. , 0. ], [1.06467664, 0.17859250, 0. ], [1.30602181, 0.08326444, 0.22790681]])
-
cholesky_solve
(
y,
upper=False,
name=None
)
cholesky_solve¶
-
Solves a linear system of equations A @ X = B, given A’s Cholesky factor matrix u and matrix B.
Input x and y is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also batches.
- Parameters
-
x (Tensor) – Multiple right-hand sides of system of equations. Its shape should be [*, M, K], where * is zero or more batch dimensions. Its data type should be float32 or float64.
y (Tensor) – The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be [*, M, M], where * is zero or more batch dimensions. Its data type should be float32 or float64.
upper (bool, optional) – whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The solution of the system of equations. Its data type is the same as that of x.
- Return type
-
Tensor
Examples
>>> import paddle >>> u = paddle.to_tensor([[1, 1, 1], ... [0, 2, 1], ... [0, 0,-1]], dtype="float64") >>> b = paddle.to_tensor([[0], [-9], [5]], dtype="float64") >>> out = paddle.linalg.cholesky_solve(b, u, upper=True) >>> print(out) Tensor(shape=[3, 1], dtype=float64, place=Place(cpu), stop_gradient=True, [[-2.50000000], [-7. ], [ 9.50000000]])
-
chunk
(
chunks,
axis=0,
name=None
)
chunk¶
-
Split the input tensor into multiple sub-Tensors.
- Parameters
-
x (Tensor) – A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
chunks (int) – The number of tensor to be split along the certain axis.
axis (int|Tensor, optional) – The axis along which to split, it can be a integer or a
0-D Tensor
with shape [] and data typeint32
orint64
. If :math::axis < 0, the axis to split along is \(rank(x) + axis\). Default is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
list(Tensor), The list of segmented Tensors.
Examples
>>> import paddle >>> x = paddle.rand([3, 9, 5]) >>> out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1) >>> # out0.shape [3, 3, 5] >>> # out1.shape [3, 3, 5] >>> # out2.shape [3, 3, 5] >>> # axis is negative, the real axis is (rank(x) + axis) which real >>> # value is 1. >>> out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2) >>> # out0.shape [3, 3, 5] >>> # out1.shape [3, 3, 5] >>> # out2.shape [3, 3, 5]
-
clip
(
min=None,
max=None,
name=None
)
clip¶
-
This operator clip all elements in input into the range [ min, max ] and return a resulting tensor as the following equation:
\[Out = MIN(MAX(x, min), max)\]- Parameters
-
x (Tensor) – An N-D Tensor with data type float16, float32, float64, int32 or int64.
min (float|int|Tensor, optional) – The lower bound with type
float
,int
or a0-D Tensor
with shape [] and typeint32
,float16
,float32
,float64
.max (float|int|Tensor, optional) – The upper bound with type
float
,int
or a0-D Tensor
with shape [] and typeint32
,float16
,float32
,float64
.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
A Tensor with the same data type and data shape as input.
- Return type
-
Tensor
Examples
>>> import paddle >>> x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32') >>> out1 = paddle.clip(x1, min=3.5, max=5.0) >>> out1 Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[3.50000000, 3.50000000], [4.50000000, 5. ]]) >>> out2 = paddle.clip(x1, min=2.5) >>> out2 Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[2.50000000, 3.50000000], [4.50000000, 6.40000010]])
-
clip_
(
min=None,
max=None,
name=None
)
clip_¶
-
Inplace version of
clip
API, the output Tensor will be inplaced with inputx
. Please refer to clip.
-
combinations
(
r=2,
with_replacement=False,
name=None
)
combinations¶
-
Compute combinations of length r of the given tensor. The behavior is similar to python’s itertools.combinations when with_replacement is set to False, and itertools.combinations_with_replacement when with_replacement is set to True.
- Parameters
-
x (Tensor) – 1-D input Tensor, the data type is float16, float32, float64, int32 or int64.
r (int, optional) – number of elements to combine, default value is 2.
with_replacement (bool, optional) – whether to allow duplication in combination, default value is False.
name (str, optional) – Name for the operation (optional, default is None).For more information, please refer to Name.
- Returns
-
out (Tensor). Tensor concatenated by combinations, same dtype with x.
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3], dtype='int32') >>> res = paddle.combinations(x) >>> print(res) Tensor(shape=[3, 2], dtype=int32, place=Place(gpu:0), stop_gradient=True, [[1, 2], [1, 3], [2, 3]])
-
concat
(
axis=0,
name=None
)
concat¶
-
Concatenates the input along the axis. It doesn’t support 0-D Tensor because it requires a certain axis, and 0-D Tensor doesn’t have any axis.
- Parameters
-
x (list|tuple) –
x
is a Tensor list or Tensor tuple which is with data type bool, float16, bfloat16, float32, float64, int8, int16, int32, int64, uint8, uint16, complex64, complex128. All the Tensors inx
must have same data type.axis (int|Tensor, optional) – Specify the axis to operate on the input Tensors. Tt should be integer or 0-D int Tensor with shape []. The effective range is [-R, R), where R is Rank(x). When
axis < 0
, it works the same way asaxis+R
. Default is 0.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A Tensor with the same data type as
x
.
Examples
>>> import paddle >>> x1 = paddle.to_tensor([[1, 2, 3], ... [4, 5, 6]]) >>> x2 = paddle.to_tensor([[11, 12, 13], ... [14, 15, 16]]) >>> x3 = paddle.to_tensor([[21, 22], ... [23, 24]]) >>> zero = paddle.full(shape=[1], dtype='int32', fill_value=0) >>> # When the axis is negative, the real axis is (axis + Rank(x)) >>> # As follow, axis is -1, Rank(x) is 2, the real axis is 1 >>> out1 = paddle.concat(x=[x1, x2, x3], axis=-1) >>> out2 = paddle.concat(x=[x1, x2], axis=0) >>> out3 = paddle.concat(x=[x1, x2], axis=zero) >>> print(out1) Tensor(shape=[2, 8], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 , 11, 12, 13, 21, 22], [4 , 5 , 6 , 14, 15, 16, 23, 24]]) >>> print(out2) Tensor(shape=[4, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 ], [4 , 5 , 6 ], [11, 12, 13], [14, 15, 16]]) >>> print(out3) Tensor(shape=[4, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 ], [4 , 5 , 6 ], [11, 12, 13], [14, 15, 16]])
-
cond
(
p=None,
name=None
)
cond¶
-
Computes the condition number of a matrix or batches of matrices with respect to a matrix norm
p
.- Parameters
-
x (Tensor) – The input tensor could be tensor of shape
(*, m, n)
where*
is zero or more batch dimensions forp
in(2, -2)
, or of shape(*, n, n)
where every matrix is invertible for any supportedp
. And the input data type could befloat32
orfloat64
.p (float|string, optional) – Order of the norm. Supported values are fro, nuc, 1, -1, 2, -2, inf, -inf. Default value is None, meaning that the order of the norm is 2.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
computing results of condition number, its data type is the same as input Tensor
x
. - Return type
-
Tensor
Examples
>>> import paddle >>> paddle.seed(2023) >>> x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]]) >>> # compute conditional number when p is None >>> out = paddle.linalg.cond(x) >>> print(out) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.41421378) >>> # compute conditional number when order of the norm is 'fro' >>> out_fro = paddle.linalg.cond(x, p='fro') >>> print(out_fro) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 3.16227770) >>> # compute conditional number when order of the norm is 'nuc' >>> out_nuc = paddle.linalg.cond(x, p='nuc') >>> print(out_nuc) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 9.24264145) >>> # compute conditional number when order of the norm is 1 >>> out_1 = paddle.linalg.cond(x, p=1) >>> print(out_1) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 2.) >>> # compute conditional number when order of the norm is -1 >>> out_minus_1 = paddle.linalg.cond(x, p=-1) >>> print(out_minus_1) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.) >>> # compute conditional number when order of the norm is 2 >>> out_2 = paddle.linalg.cond(x, p=2) >>> print(out_2) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.41421378) >>> # compute conditional number when order of the norm is -1 >>> out_minus_2 = paddle.linalg.cond(x, p=-2) >>> print(out_minus_2) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.70710671) >>> # compute conditional number when order of the norm is inf >>> out_inf = paddle.linalg.cond(x, p=float("inf")) >>> print(out_inf) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 2.) >>> # compute conditional number when order of the norm is -inf >>> out_minus_inf = paddle.linalg.cond(x, p=-float("inf")) >>> print(out_minus_inf) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.) >>> a = paddle.randn([2, 4, 4]) >>> print(a) Tensor(shape=[2, 4, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[[ 0.06132207, 1.11349595, 0.41906244, -0.24858207], [-1.85169315, -1.50370061, 1.73954511, 0.13331604], [ 1.66359663, -0.55764782, -0.59911072, -0.57773495], [-1.03176904, -0.33741450, -0.29695082, -1.50258386]], [[ 0.67233968, -1.07747352, 0.80170447, -0.06695852], [-1.85003340, -0.23008066, 0.65083790, 0.75387722], [ 0.61212337, -0.52664012, 0.19209868, -0.18707706], [-0.00711021, 0.35236868, -0.40404350, 1.28656745]]]) >>> a_cond_fro = paddle.linalg.cond(a, p='fro') >>> print(a_cond_fro) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [6.37173700 , 35.15114594]) >>> b = paddle.randn([2, 3, 4]) >>> print(b) Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[[ 0.03306439, 0.70149767, 0.77064633, -0.55978841], [-0.84461296, 0.99335045, -1.23486686, 0.59551388], [-0.63035583, -0.98797107, 0.09410731, 0.47007179]], [[ 0.85850012, -0.98949534, -1.63086998, 1.07340240], [-0.05492965, 1.04750168, -2.33754158, 1.16518629], [ 0.66847134, -1.05326962, -0.05703246, -0.48190674]]]) >>> b_cond_2 = paddle.linalg.cond(b, p=2) >>> print(b_cond_2) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [2.86566353, 6.85834455])
-
conj
(
name=None
)
conj¶
-
This function computes the conjugate of the Tensor elementwisely.
- Parameters
-
x (Tensor) – The input Tensor which hold the complex numbers. Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> data = paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]]) >>> data Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True, [[(1+1j), (2+2j), (3+3j)], [(4+4j), (5+5j), (6+6j)]]) >>> conj_data = paddle.conj(data) >>> conj_data Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True, [[(1-1j), (2-2j), (3-3j)], [(4-4j), (5-5j), (6-6j)]])
-
contiguous
(
)
contiguous¶
-
Variable don’t have ‘contiguous’ interface in static graph mode But this interface can greatly facilitate dy2static. So we give a warning here and return None.
-
copysign
(
y,
name=None
)
copysign¶
-
Create a new floating-point tensor with the magnitude of input
x
and the sign ofy
, elementwise.- Equation:
-
\[\begin{split}copysign(x_{i},y_{i})=\left\{\begin{matrix} & -|x_{i}| & if \space y_{i} <= -0.0\\ & |x_{i}| & if \space y_{i} >= 0.0 \end{matrix}\right.\end{split}\]
- Parameters
-
x (Tensor) – The input Tensor, magnitudes, the data type is bool, uint8, int8, int16, int32, int64, bfloat16, float16, float32, float64.
y (Tensor, number) – contains value(s) whose signbit(s) are applied to the magnitudes in input.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), the output tensor. The data type is the same as the input tensor.
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3], dtype='float64') >>> y = paddle.to_tensor([-1, 1, -1], dtype='float64') >>> out = paddle.copysign(x, y) >>> print(out) Tensor(shape=[3], dtype=float64, place=Place(gpu:0), stop_gradient=True, [-1., 2., -3.])
>>> x = paddle.to_tensor([1, 2, 3], dtype='float64') >>> y = paddle.to_tensor([-2], dtype='float64') >>> res = paddle.copysign(x, y) >>> print(res) Tensor(shape=[3], dtype=float64, place=Place(gpu:0), stop_gradient=True, [-1., -2., -3.])
>>> x = paddle.to_tensor([1, 2, 3], dtype='float64') >>> y = paddle.to_tensor([0.0], dtype='float64') >>> out = paddle.copysign(x, y) >>> print(out) Tensor(shape=[3], dtype=float64, place=Place(gpu:0), stop_gradient=True, [1., 2., 3.])
>>> x = paddle.to_tensor([1, 2, 3], dtype='float64') >>> y = paddle.to_tensor([-0.0], dtype='float64') >>> out = paddle.copysign(x, y) >>> print(out) Tensor(shape=[3], dtype=float64, place=Place(gpu:0), stop_gradient=True, [-1., -2., -3.])
-
copysign_
(
y,
name=None
)
copysign_¶
-
Inplace version of
copysign
API, the output Tensor will be inplaced with inputx
. Please refer to copysign.
-
corrcoef
(
rowvar=True,
name=None
)
corrcoef¶
-
A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix. For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.
The relationship between the correlation coefficient matrix R and the covariance matrix C, is
\[R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }\]The values of R are between -1 and 1.
- Parameters
-
x (Tensor) – A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
rowvar (bool, optional) – If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
name (str, optional) – Name of the output. It’s used to print debug info for developers. Details: Name. Default: None.
- Returns
-
The correlation coefficient matrix of the variables.
Examples
>>> import paddle >>> paddle.seed(2023) >>> xt = paddle.rand((3,4)) >>> print(paddle.linalg.corrcoef(xt)) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.99999988, -0.47689581, -0.89559376], [-0.47689593, 1. , 0.16345492], [-0.89559382, 0.16345496, 1. ]])
-
cos
(
name=None
)
cos¶
-
Cosine Operator. Computes cosine of x element-wise.
Input range is (-inf, inf) and output range is [-1,1].
\[out = cos(x)\]- Parameters
-
x (Tensor) – Input of Cos operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Cos operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.cos(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.92106098, 0.98006660, 0.99500418, 0.95533651])
-
cos_
(
name=None
)
cos_¶
-
Inplace version of
cos
API, the output Tensor will be inplaced with inputx
. Please refer to cos.
-
cosh
(
name=None
)
cosh¶
-
Cosh Activation Operator.
Input range (-inf, inf), output range (1, inf).
\[out = \frac{exp(x)+exp(-x)}{2}\]- Parameters
-
x (Tensor) – Input of Cosh operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Cosh operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.cosh(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [1.08107233, 1.02006674, 1.00500417, 1.04533851])
-
cosh_
(
name=None
)
cosh_¶
-
Inplace version of
cosh
API, the output Tensor will be inplaced with inputx
. Please refer to cosh.
-
count_nonzero
(
axis=None,
keepdim=False,
name=None
)
count_nonzero¶
-
Counts the number of non-zero values in the tensor x along the specified axis.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
axis (int|list|tuple, optional) – The dimensions along which the sum is performed. If
None
, sum all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Results of count operation on the specified axis of input Tensor x, it’s data type is ‘int64’.
- Return type
-
Tensor
Examples
>>> import paddle >>> # x is a 2-D Tensor: >>> x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]]) >>> out1 = paddle.count_nonzero(x) >>> out1 Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 3) >>> out2 = paddle.count_nonzero(x, axis=0) >>> out2 Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 1, 2]) >>> out3 = paddle.count_nonzero(x, axis=0, keepdim=True) >>> out3 Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 1, 2]]) >>> out4 = paddle.count_nonzero(x, axis=1) >>> out4 Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [2, 1, 0]) >>> out5 = paddle.count_nonzero(x, axis=1, keepdim=True) >>> out5 Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[2], [1], [0]]) >>> # y is a 3-D Tensor: >>> y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]], ... [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]]) >>> out6 = paddle.count_nonzero(y, axis=[1, 2]) >>> out6 Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True, [3, 6]) >>> out7 = paddle.count_nonzero(y, axis=[0, 1]) >>> out7 Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 3, 5])
-
cov
(
rowvar=True,
ddof=True,
fweights=None,
aweights=None,
name=None
)
cov¶
-
Estimate the covariance matrix of the input variables, given data and weights.
A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix. For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.
- Parameters
-
x (Tensor) – A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
rowvar (Bool, optional) – If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
ddof (Bool, optional) – If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True.
fweights (Tensor, optional) – 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None.
aweights (Tensor, optional) – 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None.
name (str, optional) – Name of the output. Default is None. It’s used to print debug info for developers. Details: Name .
- Returns
-
The covariance matrix Tensor of the variables.
- Return type
-
Tensor
Examples
>>> import paddle >>> paddle.seed(2023) >>> xt = paddle.rand((3, 4)) >>> paddle.linalg.cov(xt) >>> print(xt) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.86583614, 0.52014720, 0.25960937, 0.90525323], [0.42400089, 0.40641287, 0.97020894, 0.74437362], [0.51785129, 0.73292869, 0.97786582, 0.04315904]])
-
cpu
(
)
cpu¶
-
In dy2static, Variable also needs cpu() and cuda() interface. But, the underneath operator has only forward op but not backward one.
- Returns
-
The tensor which has copied to cpu place.
Examples
In Static Graph Mode:
>>> import paddle >>> paddle.enable_static() >>> x = paddle.static.data(name="x", shape=[2,2], dtype='float32') >>> y = x.cpu()
-
create_parameter
(
dtype,
name=None,
attr=None,
is_bias=False,
default_initializer=None
)
[source]
create_parameter¶
-
This function creates a parameter. The parameter is a learnable variable, which can have gradient, and can be optimized.
Note
This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.
- Parameters
-
shape (list of int) – Shape of the parameter
dtype (str) – Data type of the parameter. It can be set as ‘float16’, ‘float32’, ‘float64’.
name (str, optional) – For detailed information, please refer to Name . Usually name is no need to set and None by default.
attr (ParamAttr, optional) – Attribute object of the specified argument. For detailed information, please refer to ParamAttr None by default, which means that ParamAttr will be initialized as it is.
is_bias (bool, optional) – This can affect which default initializer is chosen when default_initializer is None. If is_bias, initializer.Constant(0.0) will be used. Otherwise, Xavier() will be used.
default_initializer (Initializer, optional) – Initializer for the parameter
- Returns
-
The created parameter.
Examples
>>> import paddle >>> paddle.enable_static() >>> W = paddle.create_parameter(shape=[784, 200], dtype='float32')
-
create_tensor
(
name=None,
persistable=False
)
create_tensor¶
-
Create a variable, which will hold a Tensor with data type dtype.
- Parameters
-
dtype (string|numpy.dtype) – the data type of Tensor to be created, the data type is bool, float16, float32, float64, int8, int16, int32 and int64.
name (string, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
persistable (bool) – Set the persistable flag of the create tensor. default value is False.
- Returns
-
The tensor to be created according to dtype.
- Return type
-
Variable
Examples
>>> import paddle >>> tensor = paddle.tensor.create_tensor(dtype='float32')
-
cross
(
y,
axis=9,
name=None
)
cross¶
-
Computes the cross product between two tensors along an axis.
Inputs must have the same shape, and the length of their axes should be equal to 3. If axis is not given, it defaults to the first axis found with the length 3.
- Parameters
-
x (Tensor) – The first input tensor, the data type is float16, float32, float64, int32, int64, complex64, complex128.
y (Tensor) – The second input tensor, the data type is float16, float32, float64, int32, int64, complex64, complex128.
axis (int, optional) – The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. A Tensor with same data type as x.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0], ... [3.0, 3.0, 3.0]]) >>> y = paddle.to_tensor([[1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0]]) ... >>> z1 = paddle.cross(x, y) >>> print(z1) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[-1., -1., -1.], [ 2., 2., 2.], [-1., -1., -1.]]) >>> z2 = paddle.cross(x, y, axis=1) >>> print(z2) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])
-
cuda
(
device_id=None,
blocking=True
)
cuda¶
-
In dy2static, Variable also needs cpu() and cuda() interface. But, the underneath operator has only forward op but not backward one.
- Parameters
-
self (Variable) – The variable itself.
device_id (int, optional) – The destination GPU device id. Default: None, means current device. We add this argument for dy2static translation, please do not use it.
blocking (bool, optional) – Whether blocking or not, Default: True. We add this argument for dy2static translation, please do not use it.
- Returns
-
The tensor which has copied to cuda place.
Examples
In Static Graph Mode:
>>> import paddle >>> paddle.enable_static() >>> x = paddle.static.data(name="x", shape=[2,2], dtype='float32') >>> y = x.cpu() >>> z = y.cuda()
-
cummax
(
axis=None,
dtype='int64',
name=None
)
cummax¶
-
The cumulative max of the elements along a given axis.
Note
The first element of the result is the same as the first element of the input.
- Parameters
-
x (Tensor) – The input tensor needed to be cummaxed.
axis (int, optional) – The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
dtype (str, optional) – The data type of the indices tensor, can be int32, int64. The default value is int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.
indices (Tensor), The corresponding index results of cummax operation.
Examples
>>> import paddle >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2]) >>> data = paddle.reshape(data, (2, 3)) >>> value, indices = paddle.cummax(data) >>> value Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [-1, 5, 5, 5, 5, 5]) >>> indices Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 1, 1, 1, 1, 1]) >>> value, indices = paddle.cummax(data, axis=0) >>> value Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[-1, 5, 0], [-1, 5, 2]]) >>> indices Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0], [0, 0, 1]]) >>> value, indices = paddle.cummax(data, axis=-1) >>> value Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[-1, 5, 5], [-2, -2, 2]]) >>> indices Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 1, 1], [0, 0, 2]]) >>> value, indices = paddle.cummax(data, dtype='int64') >>> assert indices.dtype == paddle.int64
-
cummin
(
axis=None,
dtype='int64',
name=None
)
cummin¶
-
The cumulative min of the elements along a given axis.
Note
The first element of the result is the same as the first element of the input.
- Parameters
-
x (Tensor) – The input tensor needed to be cummined.
axis (int, optional) – The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
dtype (str, optional) – The data type of the indices tensor, can be int32, int64. The default value is int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.
indices (Tensor), The corresponding index results of cummin operation.
Examples
>>> import paddle >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2]) >>> data = paddle.reshape(data, (2, 3)) >>> value, indices = paddle.cummin(data) >>> value Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [-1, -1, -1, -2, -3, -3]) >>> indices Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 0, 0, 3, 4, 4]) >>> value, indices = paddle.cummin(data, axis=0) >>> value Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[-1, 5, 0], [-2, -3, 0]]) >>> indices Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0], [1, 1, 0]]) >>> value, indices = paddle.cummin(data, axis=-1) >>> value Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[-1, -1, -1], [-2, -3, -3]]) >>> indices Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0], [0, 1, 1]]) >>> value, indices = paddle.cummin(data, dtype='int64') >>> assert indices.dtype == paddle.int64
-
cumprod
(
dim=None,
dtype=None,
name=None
)
cumprod¶
-
Compute the cumulative product of the input tensor x along a given dimension dim.
Note
The first element of the result is the same as the first element of the input.
- Parameters
-
x (Tensor) – the input tensor need to be cumproded.
dim (int, optional) – the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
dtype (str, optional) – The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the result of cumprod operator.
Examples
>>> import paddle >>> data = paddle.arange(12) >>> data = paddle.reshape(data, (3, 4)) >>> data Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 1 , 2 , 3 ], [4 , 5 , 6 , 7 ], [8 , 9 , 10, 11]]) >>> y = paddle.cumprod(data, dim=0) >>> y Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 1 , 2 , 3 ], [0 , 5 , 12 , 21 ], [0 , 45 , 120, 231]]) >>> y = paddle.cumprod(data, dim=-1) >>> y Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 0 , 0 , 0 ], [4 , 20 , 120 , 840 ], [8 , 72 , 720 , 7920]]) >>> y = paddle.cumprod(data, dim=1, dtype='float64') >>> y Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True, [[0. , 0. , 0. , 0. ], [4. , 20. , 120. , 840. ], [8. , 72. , 720. , 7920.]]) >>> assert y.dtype == paddle.float64
-
cumprod_
(
dim=None,
dtype=None,
name=None
)
cumprod_¶
-
Inplace version of
cumprod
API, the output Tensor will be inplaced with inputx
. Please refer to cumprod.
-
cumsum
(
axis=None,
dtype=None,
name=None
)
cumsum¶
-
The cumulative sum of the elements along a given axis.
Note
The first element of the result is the same as the first element of the input.
- Parameters
-
x (Tensor) – The input tensor needed to be cumsumed.
axis (int, optional) – The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
dtype (str, optional) – The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the result of cumsum operator.
Examples
>>> import paddle >>> data = paddle.arange(12) >>> data = paddle.reshape(data, (3, 4)) >>> y = paddle.cumsum(data) >>> y Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True, [0 , 1 , 3 , 6 , 10, 15, 21, 28, 36, 45, 55, 66]) >>> y = paddle.cumsum(data, axis=0) >>> y Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 1 , 2 , 3 ], [4 , 6 , 8 , 10], [12, 15, 18, 21]]) >>> y = paddle.cumsum(data, axis=-1) >>> y Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 1 , 3 , 6 ], [4 , 9 , 15, 22], [8 , 17, 27, 38]]) >>> y = paddle.cumsum(data, dtype='float64') >>> assert y.dtype == paddle.float64
-
cumsum_
(
axis=None,
dtype=None,
name=None
)
cumsum_¶
-
Inplace version of
cumprod
API, the output Tensor will be inplaced with inputx
. Please refer to cumprod.
-
cumulative_trapezoid
(
x=None,
dx=None,
axis=- 1,
name=None
)
cumulative_trapezoid¶
-
Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method
- Parameters
-
y (Tensor) – Input tensor to integrate. It’s data type should be float16, float32, float64.
x (Tensor, optional) – The sample points corresponding to the
y
values, the same type asy
. It is known that the size ofy
is [d_1, d_2, … , d_n] and \(axis=k\), then the size ofx
can only be [d_k] or [d_1, d_2, … , d_n ]. Ifx
is None, the sample points are assumed to be evenly spaceddx
apart. The default is None.dx (float, optional) – The spacing between sample points when
x
is None. If neitherx
nordx
is provided then the default is \(dx = 1\).axis (int, optional) – The axis along which to integrate. The default is -1.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, Definite integral of
y
is N-D tensor as approximated along a single axis by the trapezoidal rule. The result is an N-D tensor.
Examples
>>> import paddle >>> y = paddle.to_tensor([4, 5, 6], dtype='float32') >>> paddle.cumulative_trapezoid(y) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [4.50000000, 10. ]) >>> paddle.cumulative_trapezoid(y, dx=2.) >>> # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, >>> # [9. , 20.]) >>> y = paddle.to_tensor([4, 5, 6], dtype='float32') >>> x = paddle.to_tensor([1, 2, 3], dtype='float32') >>> paddle.cumulative_trapezoid(y, x) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [4.50000000, 10. ]) >>> y = paddle.to_tensor([1, 2, 3], dtype='float64') >>> x = paddle.to_tensor([8, 6, 4], dtype='float64') >>> paddle.cumulative_trapezoid(y, x) Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True, [-3., -8.]) >>> y = paddle.arange(6).reshape((2, 3)).astype('float32') >>> paddle.cumulative_trapezoid(y, axis=0) Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.50000000, 2.50000000, 3.50000000]]) >>> paddle.cumulative_trapezoid(y, axis=1) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.50000000, 2. ], [3.50000000, 8. ]])
-
deg2rad
(
name=None
)
deg2rad¶
-
Convert each of the elements of input x from degrees to angles in radians.
\[deg2rad(x)=\pi * x / 180\]- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0]) >>> result1 = paddle.deg2rad(x1) >>> result1 Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True, [3.14159274, -3.14159274, 6.28318548, -6.28318548, 1.57079637, -1.57079637]) >>> x2 = paddle.to_tensor(180) >>> result2 = paddle.deg2rad(x2) >>> result2 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 3.14159274)
-
diag
(
offset=0,
padding_value=0,
name=None
)
diag¶
-
If
x
is a vector (1-D tensor), a 2-D square tensor with the elements ofx
as the diagonal is returned.If
x
is a matrix (2-D tensor), a 1-D tensor with the diagonal elements ofx
is returned.The argument
offset
controls the diagonal offset:If
offset
= 0, it is the main diagonal.If
offset
> 0, it is superdiagonal.If
offset
< 0, it is subdiagonal.- Parameters
-
x (Tensor) – The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64, complex64, complex128.
offset (int, optional) – The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
padding_value (int|float, optional) – Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, a square matrix or a vector. The output data type is the same as input data type.
Examples
>>> import paddle >>> paddle.disable_static() >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.diag(x) >>> print(y) Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> y = paddle.diag(x, offset=1) >>> print(y) Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]]) >>> y = paddle.diag(x, padding_value=6) >>> print(y) Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 6, 6], [6, 2, 6], [6, 6, 3]])
>>> import paddle >>> paddle.disable_static() >>> x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) >>> y = paddle.diag(x) >>> print(y) Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 5]) >>> y = paddle.diag(x, offset=1) >>> print(y) Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True, [2, 6]) >>> y = paddle.diag(x, offset=-1) >>> print(y) Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True, [4])
-
diag_embed
(
offset=0,
dim1=- 2,
dim2=- 1
)
diag_embed¶
-
Creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2) are filled by
input
. By default, a 2D plane formed by the last two dimensions of the returned tensor will be selected.The argument
offset
determines which diagonal is generated:If offset = 0, it is the main diagonal.
If offset > 0, it is above the main diagonal.
If offset < 0, it is below the main diagonal.
- Parameters
-
input (Tensor|numpy.ndarray) – The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
offset (int, optional) – Which diagonal to consider. Default: 0 (main diagonal).
dim1 (int, optional) – The first dimension with respect to which to take diagonal. Default: -2.
dim2 (int, optional) – The second dimension with respect to which to take diagonal. Default: -1.
- Returns
-
Tensor, the output data type is the same as input data type.
Examples
>>> import paddle >>> diag_embed_input = paddle.arange(6) >>> diag_embed_output1 = paddle.diag_embed(diag_embed_input) >>> print(diag_embed_output1) Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0], [0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 5]]) >>> diag_embed_output2 = paddle.diag_embed(diag_embed_input, offset=-1, dim1=0,dim2=1 ) >>> print(diag_embed_output2) Tensor(shape=[7, 7], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0], [0, 0, 0, 3, 0, 0, 0], [0, 0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 0, 5, 0]]) >>> diag_embed_input_2dim = paddle.reshape(diag_embed_input,[2,3]) >>> print(diag_embed_input_2dim) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 1, 2], [3, 4, 5]]) >>> diag_embed_output3 = paddle.diag_embed(diag_embed_input_2dim,offset= 0, dim1=0, dim2=2 ) >>> print(diag_embed_output3) Tensor(shape=[3, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[[0, 0, 0], [3, 0, 0]], [[0, 1, 0], [0, 4, 0]], [[0, 0, 2], [0, 0, 5]]])
-
diagflat
(
offset=0,
name=None
)
diagflat¶
-
If
x
is a vector (1-D tensor), a 2-D square tensor with the elements ofx
as the diagonal is returned.If
x
is a tensor (more than 1-D), a 2-D square tensor with the elements of flattenedx
as the diagonal is returned.The argument
offset
controls the diagonal offset.If
offset
= 0, it is the main diagonal.If
offset
> 0, it is superdiagonal.If
offset
< 0, it is subdiagonal.- Parameters
-
x (Tensor) – The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
offset (int, optional) – The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, a square matrix. The output data type is the same as input data type.
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.diagflat(x) >>> print(y) Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> y = paddle.diagflat(x, offset=1) >>> print(y) Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]]) >>> y = paddle.diagflat(x, offset=-1) >>> print(y) Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0, 0], [1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0]])
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [3, 4]]) >>> y = paddle.diagflat(x) >>> print(y) Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> y = paddle.diagflat(x, offset=1) >>> print(y) Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 1, 0, 0, 0], [0, 0, 2, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 4], [0, 0, 0, 0, 0]]) >>> y = paddle.diagflat(x, offset=-1) >>> print(y) Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0], [0, 0, 0, 4, 0]])
-
diagonal
(
offset=0,
axis1=0,
axis2=1,
name=None
)
diagonal¶
-
Computes the diagonals of the input tensor x.
If
x
is 2D, returns the diagonal. Ifx
has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axis of the input tensor x.The argument
offset
determines where diagonals are taken from input tensor x:If offset = 0, it is the main diagonal.
If offset > 0, it is above the main diagonal.
If offset < 0, it is below the main diagonal.
- Parameters
-
x (Tensor) – The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
offset (int, optional) – Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
axis1 (int, optional) – The first axis with respect to take diagonal. Default: 0.
axis2 (int, optional) – The second axis with respect to take diagonal. Default: 1.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.
- Return type
-
Tensor
Examples
>>> import paddle >>> paddle.seed(2023) >>> x = paddle.rand([2, 2, 3],'float32') >>> print(x) Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[[0.86583614, 0.52014720, 0.25960937], [0.90525323, 0.42400089, 0.40641287]], [[0.97020894, 0.74437362, 0.51785129], [0.73292869, 0.97786582, 0.04315904]]]) >>> out1 = paddle.diagonal(x) >>> print(out1) Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.86583614, 0.73292869], [0.52014720, 0.97786582], [0.25960937, 0.04315904]]) >>> out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1) >>> print(out2) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.86583614, 0.42400089], [0.97020894, 0.97786582]]) >>> out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1) >>> print(out3) Tensor(shape=[3, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.90525323], [0.42400089], [0.40641287]]) >>> out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2) >>> print(out4) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.86583614, 0.42400089], [0.97020894, 0.97786582]])
-
diagonal_scatter
(
y,
offset=0,
axis1=0,
axis2=1,
name=None
)
diagonal_scatter¶
-
Embed the values of Tensor
y
into Tensorx
along the diagonal elements of Tensorx
, with respect toaxis1
andaxis2
.This function returns a tensor with fresh storage.
The argument
offset
controls which diagonal to consider:If
offset
= 0, it is the main diagonal.If
offset
> 0, it is above the main diagonal.If
offset
< 0, it is below the main diagonal.
Note
y
should have the same shape as paddle.diagonal.- Parameters
-
x (Tensor) –
x
is the original Tensor. Must be at least 2-dimensional.y (Tensor) –
y
is the Tensor to embed intox
offset (int, optional) – which diagonal to consider. Default: 0 (main diagonal).
axis1 (int, optional) – first axis with respect to which to take diagonal. Default: 0.
axis2 (int, optional) – second axis with respect to which to take diagonal. Default: 1.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, Tensor with diagonal embedded with
y
.
Examples
>>> import paddle >>> x = paddle.arange(6.0).reshape((2, 3)) >>> y = paddle.ones((2,)) >>> out = x.diagonal_scatter(y) >>> print(out) Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[1., 1., 2.], [3., 1., 5.]])
-
diff
(
n=1,
axis=- 1,
prepend=None,
append=None,
name=None
)
diff¶
-
Computes the n-th forward difference along the given axis. The first-order differences is computed by using the following formula:
\[out[i] = x[i+1] - x[i]\]Higher-order differences are computed by using paddle.diff() recursively. The number of n supports any positive integer value.
- Parameters
-
x (Tensor) – The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
n (int, optional) – The number of times to recursively compute the difference. Supports any positive integer value. Default:1
axis (int, optional) – The axis to compute the difference along. Default:-1
prepend (Tensor, optional) – The tensor to prepend to input along axis before computing the difference. It’s dimensions must be equivalent to that of x, and its shapes must match x’s shape except on axis.
append (Tensor, optional) – The tensor to append to input along axis before computing the difference, It’s dimensions must be equivalent to that of x, and its shapes must match x’s shape except on axis.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output tensor with same dtype with x.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 4, 5, 2]) >>> out = paddle.diff(x) >>> out Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [ 3, 1, -3]) >>> x_2 = paddle.to_tensor([1, 4, 5, 2]) >>> out = paddle.diff(x_2, n=2) >>> out Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True, [ -2, -4]) >>> y = paddle.to_tensor([7, 9]) >>> out = paddle.diff(x, append=y) >>> out Tensor(shape=[5], dtype=int64, place=Place(cpu), stop_gradient=True, [ 3, 1, -3, 5, 2]) >>> z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) >>> out = paddle.diff(z, axis=0) >>> out Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[3, 3, 3]]) >>> out = paddle.diff(z, axis=1) >>> out Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 1], [1, 1]])
-
digamma
(
name=None
)
digamma¶
-
Calculates the digamma of the given input tensor, element-wise.
\[Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }\]- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the digamma of the input Tensor, the shape and data type is the same with input.
Examples
>>> import paddle >>> data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32') >>> res = paddle.digamma(data) >>> res Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[-0.57721591, 0.03648996], [ nan , 5.32286835]])
-
digamma_
(
name=None
)
digamma_¶
-
Inplace version of
digamma
API, the output Tensor will be inplaced with inputx
. Please refer to digamma.
-
dim
(
)
dim¶
-
Returns the dimension of current Variable
- Returns
-
the dimension
Examples
>>> import paddle >>> paddle.enable_static() >>> # create a static Variable >>> x = paddle.static.data(name='x', shape=[3, 2, 1]) >>> # print the dimension of the Variable >>> print(x.dim()) 3
-
dist
(
y,
p=2,
name=None
)
dist¶
-
Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure of distance. The shapes of x and y must be broadcastable. The definition is as follows, for details, please refer to the Introduction to Tensor:
Each input has at least one dimension.
Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.
Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be obtained as follows:
1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the tensor with fewer dimensions.
For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the dimension of y.
x (4-D Tensor): 8 x 1 x 6 x 1
y (4-D Tensor): 1 x 7 x 1 x 5
2. Determine the size of each dimension of the output z: choose the maximum value from the two input dimensions.
z (4-D Tensor): 8 x 7 x 6 x 5
If the number of dimensions of the two inputs are the same, the size of the output can be directly determined in step 2. When p takes different values, the norm formula is as follows:
When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.
\[\begin{split}||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}\end{split}\]When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
\[||z||_\infty=\max_i |z_i|\]When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
\[||z||_{-\infty}=\min_i |z_i|\]Otherwise, the p-norm of z follows the formula,
\[\begin{split}||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}\end{split}\]- Parameters
-
x (Tensor) – 1-D to 6-D Tensor, its data type is bfloat16, float16, float32 or float64.
y (Tensor) – 1-D to 6-D Tensor, its data type is bfloat16, float16, float32 or float64.
p (float, optional) – The norm to be computed, its data type is float32 or float64. Default: 2.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Tensor that is the p-norm of (x - y).
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32") >>> y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32") >>> out = paddle.dist(x, y, 0) >>> print(out) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.) >>> out = paddle.dist(x, y, 2) >>> print(out) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 2.) >>> out = paddle.dist(x, y, float("inf")) >>> print(out) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 2.) >>> out = paddle.dist(x, y, float("-inf")) >>> print(out) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.)
-
divide
(
y,
name=None
)
divide¶
-
Divide two tensors element-wise. The equation is:
\[out = x / y\]Note
paddle.divide
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([2, 3, 4], dtype='float64') >>> y = paddle.to_tensor([1, 5, 2], dtype='float64') >>> z = paddle.divide(x, y) >>> print(z) Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True, [2. , 0.60000000, 2. ])
-
divide_
(
y,
name=None
)
divide_¶
-
Inplace version of
divide
API, the output Tensor will be inplaced with inputx
. Please refer to divide.
-
dot
(
y,
name=None
)
dot¶
-
This operator calculates inner product for vectors.
Note
Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix is the batch dimension, which means that the vectors of multiple batches are dotted.
- Parameters
-
x (Tensor) – 1-D or 2-D
Tensor
. Its dtype should befloat32
,float64
,int32
,int64
,complex64
,complex128
y (Tensor) – 1-D or 2-D
Tensor
. Its dtype should befloat32
,float64
,int32
,int64
,complex64
,complex128
name (str, optional) – Name of the output. Default is None. It’s used to print debug info for developers. Details: Name
- Returns
-
the calculated result Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> # 1-D Tensor * 1-D Tensor >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.to_tensor([4, 5, 6]) >>> z = paddle.dot(x, y) >>> print(z) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 32) >>> # 2-D Tensor * 2-D Tensor >>> x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]]) >>> y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]]) >>> z = paddle.dot(x, y) >>> print(z) Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True, [32, 64])
-
dsplit
(
num_or_indices,
name=None
)
dsplit¶
-
Split the input tensor into multiple sub-Tensors along the depth axis, which is equivalent to
paddle.tensor_split
withaxis=2
.- Parameters
-
x (Tensor) – A Tensor whose dimension must be greater than 2. The data type is bool, bfloat16, float16, float32, float64, uint8, int32 or int64.
num_or_indices (int|list|tuple) – If
num_or_indices
is an intn
,x
is split inton
sections. Ifnum_or_indices
is a list or tuple of integer indices,x
is split at each of the indices.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
list[Tensor], The list of segmented Tensors.
Examples
>>> import paddle >>> # x is a Tensor of shape [7, 6, 8] >>> x = paddle.rand([7, 6, 8]) >>> out0, out1 = paddle.dsplit(x, num_or_indices=2) >>> print(out0.shape) [7, 6, 4] >>> print(out1.shape) [7, 6, 4] >>> out0, out1, out2 = paddle.dsplit(x, num_or_indices=[1, 4]) >>> print(out0.shape) [7, 6, 1] >>> print(out1.shape) [7, 6, 3] >>> print(out2.shape) [7, 6, 4]
-
eig
(
name=None
)
eig¶
-
Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
Note
If the matrix is a Hermitian or a real symmetric matrix, please use eigh instead, which is much faster.
If only eigenvalues is needed, please use eigvals instead.
If the matrix is of any shape, please use svd.
This API is only supported on CPU device.
The output datatype is always complex for both real and complex input.
- Parameters
-
x (Tensor) – A tensor with shape math:[*, N, N], The data type of the x should be one of
float32
,float64
,compplex64
orcomplex128
.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A tensor with shape math:[*, N] refers to the eigen values. Eigenvectors(Tensors): A tensor with shape math:[*, N, N] refers to the eigen vectors.
- Return type
-
Eigenvalues(Tensors)
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543], ... [9.956216, 8.749598, 6.066444 ], ... [4.4251957, 1.7983172, 0.370647 ]]) >>> w, v = paddle.linalg.eig(x) >>> print(v) Tensor(shape=[3, 3], dtype=complex64, place=Place(cpu), stop_gradient=True, [[ (0.5061365365982056+0j) , (0.7971761226654053+0j) , (0.1851806491613388+0j) ], [ (0.8308236598968506+0j) , (-0.3463813066482544+0j) , (-0.6837005615234375+0j) ], [ (0.23142573237419128+0j), (-0.49449989199638367+0j), (0.7058765292167664+0j) ]]) >>> print(w) Tensor(shape=[3], dtype=complex64, place=Place(cpu), stop_gradient=True, [ (16.50470733642578+0j) , (-5.503481388092041+0j) , (-0.21026138961315155+0j)])
-
eigvals
(
name=None
)
eigvals¶
-
Compute the eigenvalues of one or more general matrices.
Warning
The gradient kernel of this operator does not yet developed. If you need back propagation through this operator, please replace it with paddle.linalg.eig.
- Parameters
-
x (Tensor) – A square matrix or a batch of square matrices whose eigenvalues will be computed. Its shape should be [*, M, M], where * is zero or more batch dimensions. Its data type should be float32, float64, complex64, or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A tensor containing the unsorted eigenvalues which has the same batch dimensions with x. The eigenvalues are complex-valued even when x is real.
Examples
>>> import paddle >>> paddle.seed(2023) >>> x = paddle.rand(shape=[3, 3], dtype='float64') >>> print(x) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[0.86583615, 0.52014721, 0.25960938], [0.90525323, 0.42400090, 0.40641288], [0.97020893, 0.74437359, 0.51785128]]) >>> print(paddle.linalg.eigvals(x)) Tensor(shape=[3], dtype=complex128, place=Place(cpu), stop_gradient=True, [ (1.788956694280852+0j) , (0.16364484879581526+0j), (-0.14491322408727625+0j)])
-
eigvalsh
(
UPLO='L',
name=None
)
eigvalsh¶
-
Computes the eigenvalues of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.
- Parameters
-
x (Tensor) – A tensor with shape \([*, M, M]\) , where * is zero or greater batch dimension. The data type of the input Tensor x should be one of float32, float64, complex64, complex128.
UPLO (str, optional) – Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor eigenvalues in ascending order.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, -2j], [2j, 5]]) >>> out_value = paddle.eigvalsh(x, UPLO='L') >>> print(out_value) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [0.17157286, 5.82842731])
-
equal
(
y,
name=None
)
equal¶
-
This layer returns the truth value of \(x == y\) elementwise.
Note
The output has no gradient.
- Parameters
-
x (Tensor) – Tensor, data type is bool, float16, float32, float64, uint8, int8, int16, int32, int64.
y (Tensor) – Tensor, data type is bool, float16, float32, float64, uint8, int8, int16, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
output Tensor, it’s shape is the same as the input’s Tensor, and the data type is bool. The result of this op is stop_gradient.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.to_tensor([1, 3, 2]) >>> result1 = paddle.equal(x, y) >>> print(result1) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False, False])
-
equal_
(
y,
name=None
)
equal_¶
-
Inplace version of
equal
API, the output Tensor will be inplaced with inputx
. Please refer to equal.
-
equal_all
(
y,
name=None
)
equal_all¶
-
Returns the truth value of \(x == y\). True if two inputs have the same elements, False otherwise.
Note
The output has no gradient.
- Parameters
-
x (Tensor) – Tensor, data type is bool, float32, float64, int32, int64.
y (Tensor) – Tensor, data type is bool, float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
output Tensor, data type is bool, value is [False] or [True].
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.to_tensor([1, 2, 3]) >>> z = paddle.to_tensor([1, 4, 3]) >>> result1 = paddle.equal_all(x, y) >>> print(result1) Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, True) >>> result2 = paddle.equal_all(x, z) >>> print(result2) Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, False)
-
erf
(
name=None
)
erf¶
-
The error function. For more details, see Error function.
- Equation:
-
\[out = \frac{2}{\sqrt{\pi}} \int_{0}^{x}e^{- \eta^{2}}d\eta\]
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output of Erf, dtype: float32 or float64, the same as the input, shape: the same as the input.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.erf(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.42839241, -0.22270259, 0.11246292, 0.32862678])
-
erfinv
(
name=None
)
erfinv¶
-
The inverse error function of x. Please refer to erf
\[erfinv(erf(x)) = x.\]- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float16, bfloat16, float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), an N-D Tensor, the shape and data type is the same with input.
Example
>>> import paddle >>> x = paddle.to_tensor([0, 0.5, -1.], dtype="float32") >>> out = paddle.erfinv(x) >>> out Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [ 0. , 0.47693631, -inf. ])
-
erfinv_
(
name=None
)
erfinv_¶
-
Inplace version of
erfinv
API, the output Tensor will be inplaced with inputx
. Please refer to erfinv.
-
exp
(
name=None
)
exp¶
-
Computes exp of x element-wise with a natural number e as the base.
\[out = e^x\]- Parameters
-
x (Tensor) – Input of Exp operator, an N-D Tensor, with data type int32, int64, float16, float32, float64, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Exp operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.exp(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.67032003, 0.81873077, 1.10517097, 1.34985888])
-
exp_
(
name=None
)
exp_¶
-
Inplace version of
exp
API, the output Tensor will be inplaced with inputx
. Please refer to exp.
-
expand
(
shape,
name=None
)
expand¶
-
Expand the input tensor to a given shape.
Both the number of dimensions of
x
and the number of elements inshape
should be less than or equal to 6. And the number of dimensions ofx
should be less than the number of elements inshape
. The dimension to expand must have a value 0.- Parameters
-
x (Tensor) – The input Tensor, its data type is bool, float16, float32, float64, int32, int64, uint8, uint16, complex64 or complex128.
shape (list|tuple|Tensor) – The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. The value -1 in shape means keeping the corresponding dimension unchanged.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
N-D Tensor, A Tensor with the given shape. The data type is the same as
x
.
Examples
>>> import paddle >>> data = paddle.to_tensor([1, 2, 3], dtype='int32') >>> out = paddle.expand(data, shape=[2, 3]) >>> print(out) Tensor(shape=[2, 3], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3], [1, 2, 3]])
-
expand_as
(
y,
name=None
)
expand_as¶
-
Expand the input tensor
x
to the same shape as the input tensory
.Both the number of dimensions of
x
andy
must be less than or equal to 6, and the number of dimensions ofy
must be greater than or equal to that ofx
. The dimension to expand must have a value of 0.- Parameters
-
x (Tensor) – The input tensor, its data type is bool, float32, float64, int32 or int64.
y (Tensor) – The input tensor that gives the shape to expand to.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
N-D Tensor, A Tensor with the same shape as
y
. The data type is the same asx
.
Examples
>>> import paddle >>> data_x = paddle.to_tensor([1, 2, 3], 'int32') >>> data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32') >>> out = paddle.expand_as(data_x, data_y) >>> print(out) Tensor(shape=[2, 3], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3], [1, 2, 3]])
-
expm1
(
name=None
)
expm1¶
-
Expm1 Operator. Computes expm1 of x element-wise with a natural number \(e\) as the base.
\[out = e^x - 1\]- Parameters
-
x (Tensor) – Input of Expm1 operator, an N-D Tensor, with data type int32, int64, float16, float32, float64, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Expm1 operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.expm1(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.32967997, -0.18126924, 0.10517092, 0.34985882])
-
exponential_
(
lam=1.0,
name=None
)
exponential_¶
-
This inplace OP fill input Tensor
x
with random number from a Exponential Distribution.lam
is \(\lambda\) parameter of Exponential Distribution.\[f(x) = \lambda e^{-\lambda x}\]- Parameters
-
x (Tensor) – Input tensor. The data type should be float32, float64.
lam (float, optional) – \(\lambda\) parameter of Exponential Distribution. Default, 1.0.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Input Tensor
x
. - Return type
-
Tensor
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> paddle.seed(100) >>> x = paddle.empty([2,3]) >>> x.exponential_() >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.80643415, 0.23211166, 0.01169797], [0.72520679, 0.45208144, 0.30234432]]) >>>
-
flatten
(
start_axis=0,
stop_axis=- 1,
name=None
)
flatten¶
-
Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.
Note
The output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode. If you want to use the Tensor copy version, please use Tensor.clone likeflatten_clone_x = x.flatten().clone()
.For Example:
Case 1: Given X.shape = (3, 100, 100, 4) and start_axis = 1 end_axis = 2 We get: Out.shape = (3, 100 * 100, 4) Case 2: Given X.shape = (3, 100, 100, 4) and start_axis = 0 stop_axis = -1 We get: Out.shape = (3 * 100 * 100 * 4)
- Parameters
-
x (Tensor) – A tensor of number of dimensions >= axis. A tensor with data type float16, float32, float64, int8, int32, int64, uint8.
start_axis (int) – the start axis to flatten
stop_axis (int) – the stop axis to flatten
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A tensor with the contents of the input tensor, whose input axes are flattened by indicated
start_axis
andend_axis
, and data type is the same as inputx
.
Examples
>>> import paddle >>> image_shape=(2, 3, 4, 4) >>> x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]) >>> img = paddle.reshape(x, image_shape) >>> out = paddle.flatten(img, start_axis=1, stop_axis=2) >>> print(out.shape) [2, 12, 4] >>> # out shares data with img in dygraph mode >>> img[0, 0, 0, 0] = -1 >>> print(out[0, 0, 0]) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, -1)
-
flatten_
(
start_axis=0,
stop_axis=- 1,
name=None
)
flatten_¶
-
Inplace version of
flatten
API, the output Tensor will be inplaced with inputx
. Please refer to flatten.
-
flip
(
axis,
name=None
)
flip¶
-
Reverse the order of a n-D tensor along given axis in axis.
- Parameters
-
x (Tensor) – A Tensor(or LoDTensor) with shape \([N_1, N_2,..., N_k]\) . The data type of the input Tensor x should be float32, float64, int32, int64, bool.
axis (list|tuple|int) – The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
Examples
>>> import paddle >>> image_shape=(3, 2, 2) >>> img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape) >>> tmp = paddle.flip(img, [0,1]) >>> print(tmp) Tensor(shape=[3, 2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[[10, 11], [8 , 9 ]], [[6 , 7 ], [4 , 5 ]], [[2 , 3 ], [0 , 1 ]]]) >>> out = paddle.flip(tmp,-1) >>> print(out) Tensor(shape=[3, 2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[[11, 10], [9 , 8 ]], [[7 , 6 ], [5 , 4 ]], [[3 , 2 ], [1 , 0 ]]])
-
floor
(
name=None
)
floor¶
-
Floor Activation Operator. Computes floor of x element-wise.
\[out = \lfloor x \rfloor\]- Parameters
-
x (Tensor) – Input of Floor operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Floor operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.floor(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-1., -1., 0., 0.])
-
floor_
(
name=None
)
floor_¶
-
Inplace version of
floor
API, the output Tensor will be inplaced with inputx
. Please refer to floor.
-
floor_divide
(
y,
name=None
)
floor_divide¶
-
Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
\[out = trunc(x / y)\]\(x\): Multidimensional Tensor.
\(y\): Multidimensional Tensor.
Note
paddle.floor_divide
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .Also note that the name
floor_divide
can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.- Parameters
-
x (Tensor) – the input tensor, it’s data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
y (Tensor) – the input tensor, it’s data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with $x$.
Examples
>>> import paddle >>> x = paddle.to_tensor([2, 3, 8, 7]) >>> y = paddle.to_tensor([1, 5, 3, 3]) >>> z = paddle.floor_divide(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [2, 0, 2, 2])
-
floor_divide_
(
y,
name=None
)
floor_divide_¶
-
Inplace version of
floor_divide
API, the output Tensor will be inplaced with inputx
. Please refer to floor_divide.
-
floor_mod
(
y,
name=None
)
floor_mod¶
-
Mod two tensors element-wise. The equation is:
\[out = x \% y\]Note
paddle.remainder
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .And mod, floor_mod are all functions with the same name
- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([2, 3, 8, 7]) >>> y = paddle.to_tensor([1, 5, 3, 3]) >>> z = paddle.remainder(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1]) >>> z = paddle.floor_mod(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1]) >>> z = paddle.mod(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1])
-
floor_mod_
(
y,
name=None
)
floor_mod_¶
-
Inplace version of
floor_mod_
API, the output Tensor will be inplaced with inputx
. Please refer to floor_mod_.
-
fmax
(
y,
name=None
)
fmax¶
-
Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element. If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned. The equation is:
\[out = fmax(x, y)\]Note
paddle.fmax
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [7, 8]]) >>> y = paddle.to_tensor([[3, 4], [5, 6]]) >>> res = paddle.fmax(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[3, 4], [7, 8]]) >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]]) >>> y = paddle.to_tensor([3, 0, 4]) >>> res = paddle.fmax(x, y) >>> print(res) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[3, 2, 4], [3, 2, 4]]) >>> x = paddle.to_tensor([2, 3, 5], dtype='float32') >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32') >>> res = paddle.fmax(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [2., 3., 5.]) >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32') >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32') >>> res = paddle.fmax(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [5. , 3. , inf.])
-
fmin
(
y,
name=None
)
fmin¶
-
Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element. If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned. The equation is:
\[out = fmin(x, y)\]Note
paddle.fmin
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [7, 8]]) >>> y = paddle.to_tensor([[3, 4], [5, 6]]) >>> res = paddle.fmin(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 2], [5, 6]]) >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]]) >>> y = paddle.to_tensor([3, 0, 4]) >>> res = paddle.fmin(x, y) >>> print(res) Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[[1, 0, 3], [1, 0, 3]]]) >>> x = paddle.to_tensor([2, 3, 5], dtype='float32') >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32') >>> res = paddle.fmin(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 3., 5.]) >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64') >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64') >>> res = paddle.fmin(x, y) >>> print(res) Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True, [ 1. , -inf., 5. ])
-
frac
(
name=None
)
frac¶
-
This API is used to return the fractional portion of each element in input.
- Parameters
-
x (Tensor) – The input tensor, which data type should be int32, int64, float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output Tensor of frac.
- Return type
-
Tensor
Examples
>>> import paddle >>> input = paddle.to_tensor([[12.22000003, -1.02999997], ... [-0.54999995, 0.66000003]]) >>> output = paddle.frac(input) >>> output Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.22000003, -0.02999997], [-0.54999995, 0.66000003]])
-
frac_
(
name=None
)
frac_¶
-
Inplace version of
frac
API, the output Tensor will be inplaced with inputx
. Please refer to frac.
-
frexp
(
name=None
)
frexp¶
-
The function used to decompose a floating point number into mantissa and exponent.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
-
- mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
-
the same as those of input.
-
- exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
-
the same as those of input.
-
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32") >>> mantissa, exponent = paddle.tensor.math.frexp(x) >>> mantissa Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.50000000, 0.50000000, 0.75000000, 0.50000000]]) >>> exponent Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 2., 2., 3.]])
-
gammainc
(
y,
name=None
)
gammainc¶
-
Computes the regularized lower incomplete gamma function.
\[P(x, y) = \frac{1}{\Gamma(x)} \int_{0}^{y} t^{x-1} e^{-t} dt\]- Parameters
-
x (Tensor) – The non-negative argument Tensor. Must be one of the following types: float32, float64.
y (Tensor) – The positive parameter Tensor. Must be one of the following types: float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the gammainc of the input Tensor.
Examples
>>> import paddle >>> x = paddle.to_tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype="float32") >>> y = paddle.to_tensor([0, 1, 10, 100, 1000], dtype="float32") >>> out = paddle.gammainc(x, y) >>> print(out) Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0. , 0.84270084, 0.99999225, 1. , 1. ])
-
gammainc_
(
y,
name=None
)
gammainc_¶
-
Inplace version of
gammainc
API, the output Tensor will be inplaced with inputx
. Please refer to gammainc.
-
gammaincc
(
y,
name=None
)
gammaincc¶
-
Computes the regularized upper incomplete gamma function.
\[Q(x, y) = \frac{1}{\Gamma(x)} \int_{y}^{\infty} t^{x-1} e^{-t} dt\]- Parameters
-
x (Tensor) – The non-negative argument Tensor. Must be one of the following types: float32, float64.
y (Tensor) – The positive parameter Tensor. Must be one of the following types: float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the gammaincc of the input Tensor.
Examples
>>> import paddle >>> x = paddle.to_tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype="float32") >>> y = paddle.to_tensor([0, 1, 10, 100, 1000], dtype="float32") >>> out = paddle.gammaincc(x, y) >>> print(out) Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [1. , 0.15729916, 0.00000774, 0. , 0. ])
-
gammaincc_
(
y,
name=None
)
gammaincc_¶
-
Inplace version of
gammaincc
API, the output Tensor will be inplaced with inputx
. Please refer to gammaincc.
-
gammaln
(
name=None
)
gammaln¶
-
Calculates the logarithm of the absolute value of the gamma function elementwisely.
- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: float16, float32, float64, bfloat16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, The values of the logarithm of the absolute value of the gamma at the given tensor x.
Examples
>>> import paddle >>> x = paddle.arange(1.5, 4.5, 0.5) >>> out = paddle.gammaln(x) >>> print(out) Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.12078224, 0. , 0.28468287, 0.69314718, 1.20097363, 1.79175949])
-
gammaln_
(
name=None
)
gammaln_¶
-
Inplace version of
gammaln
API, the output Tensor will be inplaced with inputx
. Please refer to gammaln.
-
gather
(
index,
axis=None,
name=None
)
gather¶
-
Output is obtained by gathering entries of
axis
ofx
indexed byindex
and concatenate them together.Given: x = [[1, 2], [3, 4], [5, 6]] index = [1, 2] axis=[0] Then: out = [[3, 4], [5, 6]]
- Parameters
-
x (Tensor) – The source input tensor with rank>=1. Supported data type is int32, int64, float32, float64, complex64, complex128 and uint8 (only for CPU), float16 (only for GPU).
index (Tensor) – The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
axis (Tensor|int, optional) – The axis of input to be gathered, it’s can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the
axis
is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as
x
. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
Examples
>>> import paddle >>> input = paddle.to_tensor([[1,2],[3,4],[5,6]]) >>> index = paddle.to_tensor([0,1]) >>> output = paddle.gather(input, index, axis=0) >>> print(output) Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 2], [3, 4]])
-
gather_nd
(
index,
name=None
)
gather_nd¶
-
This function is actually a high-dimensional extension of
gather
and supports for simultaneous indexing by multiple axes.index
is a K-dimensional integer tensor, which is regarded as a (K-1)-dimensional tensor ofindex
intoinput
, where each element defines a slice of params:\[output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]\]Obviously,
index.shape[-1] <= input.rank
. And, the output tensor has shapeindex.shape[:-1] + input.shape[index.shape[-1]:]
.Given: x = [[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]] x.shape = (2, 3, 4) * Case 1: index = [[1]] gather_nd(x, index) = [x[1, :, :]] = [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]] * Case 2: index = [[0,2]] gather_nd(x, index) = [x[0, 2, :]] = [8, 9, 10, 11] * Case 3: index = [[1, 2, 3]] gather_nd(x, index) = [x[1, 2, 3]] = [23]
- Parameters
-
x (Tensor) – The input Tensor which it’s data type should be bool, float16, float32, float64, int32, int64.
index (Tensor) – The index input with rank > 1, index.shape[-1] <= input.rank. Its dtype should be int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
-1] + input.shape[index.shape[-1]:]
- Return type
-
output (Tensor), A tensor with the shape index.shape[
Examples
>>> import paddle >>> x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]], ... [[7, 8], [9, 10], [11, 12]]]) >>> index = paddle.to_tensor([[0, 1]]) >>> output = paddle.gather_nd(x, index) >>> print(output) Tensor(shape=[1, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[3, 4]])
-
gcd
(
y,
name=None
)
gcd¶
-
Computes the element-wise greatest common divisor (GCD) of input |x| and |y|. Both x and y must have integer types.
Note
gcd(0,0)=0, gcd(0, y)=|y|
If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is int32, int64.
y (Tensor) – An N-D Tensor, the data type is int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor, the data type is the same with input.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> x1 = paddle.to_tensor(12) >>> x2 = paddle.to_tensor(20) >>> paddle.gcd(x1, x2) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 4) >>> x3 = paddle.arange(6) >>> paddle.gcd(x3, x2) Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [20, 1 , 2 , 1 , 4 , 5]) >>> x4 = paddle.to_tensor(0) >>> paddle.gcd(x4, x2) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 20) >>> paddle.gcd(x4, x4) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 0) >>> x5 = paddle.to_tensor(-20) >>> paddle.gcd(x1, x5) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 4)
-
gcd_
(
y,
name=None
)
gcd_¶
-
Inplace version of
gcd
API, the output Tensor will be inplaced with inputx
. Please refer to gcd.
-
geometric_
(
probs,
name=None
)
geometric_¶
-
Fills the tensor with numbers drawn from the Geometric distribution.
- Parameters
-
x (Tensor) – the tensor will be filled, The data type is float32 or float64.
probs (Real|Tensor) – Probability parameter. The value of probs must be positive. When the parameter is a tensor, probs is probability of success for each trial.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
input tensor with numbers drawn from the Geometric distribution.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.randn([3, 4]) >>> x.geometric_(0.3) >>> >>> print(x) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[2.42739224, 4.78268528, 1.23302543, 3.76555204], [1.38877118, 0.16075331, 0.16401523, 2.47349310], [1.72872102, 2.76533413, 0.33410925, 1.63351011]])
-
greater_equal
(
y,
name=None
)
greater_equal¶
-
Returns the truth value of \(x >= y\) elementwise, which is equivalent function to the overloaded operator >=.
Note
The output has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, uint8, int8, int16, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, uint8, int8, int16, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The output shape is same as input
x
. The output data type is bool. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.to_tensor([1, 3, 2]) >>> result1 = paddle.greater_equal(x, y) >>> print(result1) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False, True ])
-
greater_equal_
(
y,
name=None
)
greater_equal_¶
-
Inplace version of
greater_equal
API, the output Tensor will be inplaced with inputx
. Please refer to greater_equal.
-
greater_than
(
y,
name=None
)
greater_than¶
-
Returns the truth value of \(x > y\) elementwise, which is equivalent function to the overloaded operator >.
Note
The output has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, uint8, int8, int16, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, uint8, int8, int16, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The output shape is same as input
x
. The output data type is bool. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.to_tensor([1, 3, 2]) >>> result1 = paddle.greater_than(x, y) >>> print(result1) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [False, False, True ])
-
greater_than_
(
y,
name=None
)
greater_than_¶
-
Inplace version of
greater_than
API, the output Tensor will be inplaced with inputx
. Please refer to greater_than.
-
heaviside
(
y,
name=None
)
heaviside¶
-
Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is
\[\begin{split}heaviside(x, y)= \left\{ \begin{array}{lcl} 0,& &\text{if} \ x < 0, \\ y,& &\text{if} \ x = 0, \\ 1,& &\text{if} \ x > 0. \end{array} \right.\end{split}\]Note
paddle.heaviside
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – The input tensor of Heaviside step function, it’s data type should be float16, float32, float64, int32 or int64.
y (Tensor) – The tensor that determines a Heaviside step function, it’s data type should be float16, float32, float64, int32 or int64.
name (str, optional) – Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.5, 0, 0.5]) >>> y = paddle.to_tensor([0.1]) >>> paddle.heaviside(x, y) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [0. , 0.10000000, 1. ]) >>> x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]]) >>> y = paddle.to_tensor([0.1, 0.2, 0.3]) >>> paddle.heaviside(x, y) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0. , 0.20000000, 1. ], [0. , 1. , 0.30000001]])
-
histogram
(
bins=100,
min=0,
max=0,
name=None
)
histogram¶
-
Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max. If min and max are both zero, the minimum and maximum values of the data are used.
- Parameters
-
input (Tensor) – A Tensor(or LoDTensor) with shape \([N_1, N_2,..., N_k]\) . The data type of the input Tensor should be float32, float64, int32, int64.
bins (int, optional) – number of histogram bins. Default: 100.
min (int, optional) – lower end of the range (inclusive). Default: 0.
max (int, optional) – upper end of the range (inclusive). Default: 0.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
data type is int64, shape is (nbins,).
- Return type
-
Tensor
Examples
>>> import paddle >>> inputs = paddle.to_tensor([1, 2, 1]) >>> result = paddle.histogram(inputs, bins=4, min=0, max=3) >>> print(result) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 2, 1, 0])
-
histogramdd
(
bins=10,
ranges=None,
density=False,
weights=None,
name=None
)
histogramdd¶
-
Computes a multi-dimensional histogram of the values in a tensor.
Interprets the elements of an input tensor whose innermost dimension has size N as a collection of N-dimensional points. Maps each of the points into a set of N-dimensional bins and returns the number of points (or total weight) in each bin.
input x must be a tensor with at least 2 dimensions. If input has shape (M, N), each of its M rows defines a point in N-dimensional space. If input has three or more dimensions, all but the last dimension are flattened.
Each dimension is independently associated with its own strictly increasing sequence of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D tensors. Alternatively, bin edges may be constructed automatically by passing a sequence of integers specifying the number of equal-width bins in each dimension.
- Parameters
-
x (Tensor) – The input tensor.
bins (Tensor[], int[], or int) – If Tensor[], defines the sequences of bin edges. If int[], defines the number of equal-width bins in each dimension. If int, defines the number of equal-width bins for all dimensions.
ranges (sequence of float, optional) – Defines the leftmost and rightmost bin edges in each dimension. If is None, set the minimum and maximum as leftmost and rightmost edges for each dimension.
density (bool, optional) – If False (default), the result will contain the count (or total weight) in each bin. If True, each count (weight) is divided by the total count (total weight), then divided by the volume of its associated bin.
weights (Tensor, optional) – By default, each value in the input has weight 1. If a weight tensor is passed, each N-dimensional coordinate in input contributes its associated weight towards its bin’s result. The weight tensor should have the same shape as the input tensor excluding its innermost dimension N.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
N-dimensional Tensor containing the values of the histogram.
bin_edges(Tensor[])
, sequence of N 1D Tensors containing the bin edges.
Examples
>>> import paddle >>> x = paddle.to_tensor([[0., 1.], [1., 0.], [2.,0.], [2., 2.]]) >>> bins = [3,3] >>> weights = paddle.to_tensor([1., 2., 4., 8.]) >>> paddle.histogramdd(x, bins=bins, weights=weights) (Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[0., 1., 0.], [2., 0., 0.], [4., 0., 8.]]), [Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True, [0. , 0.66666669, 1.33333337, 2. ]), Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True, [0. , 0.66666669, 1.33333337, 2. ])])
>>> import paddle >>> y = paddle.to_tensor([[0., 0.], [1., 1.], [2., 2.]]) >>> bins = [2,2] >>> ranges = [0., 1., 0., 1.] >>> density = True >>> paddle.histogramdd(y, bins=bins, ranges=ranges, density=density) (Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[2., 0.], [0., 2.]]), [Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [0. , 0.50000000, 1. ]), Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [0. , 0.50000000, 1. ])])
-
householder_product
(
tau,
name=None
)
householder_product¶
-
Computes the first n columns of a product of Householder matrices.
This function can get the vector \(\omega_{i}\) from matrix x (m x n), the \(i-1\) elements are zeros, and the i-th is 1, the rest of the elements are from i-th column of x. And with the vector tau can calculate the first n columns of a product of Householder matrices.
\(H_i = I_m - \tau_i \omega_i \omega_i^H\)
- Parameters
- Returns
-
Tensor, the dtype is same as input tensor, the Q in QR decomposition.
\(out = Q = H_1H_2H_3...H_k\)
Examples
>>> import paddle >>> x = paddle.to_tensor([[-1.1280, 0.9012, -0.0190], ... [ 0.3699, 2.2133, -1.4792], ... [ 0.0308, 0.3361, -3.1761], ... [-0.0726, 0.8245, -0.3812]]) >>> tau = paddle.to_tensor([1.7497, 1.1156, 1.7462]) >>> Q = paddle.linalg.householder_product(x, tau) >>> print(Q) Tensor(shape=[4, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[-0.74969995, -0.02181768, 0.31115776], [-0.64721400, -0.12367040, -0.21738708], [-0.05389076, -0.37562513, -0.84836429], [ 0.12702821, -0.91822827, 0.36892807]])
-
hsplit
(
num_or_indices,
name=None
)
hsplit¶
-
Split the input tensor into multiple sub-Tensors along the horizontal axis, which is equivalent to
paddle.tensor_split
withaxis=1
whenx
‘s dimension is larger than 1, or equivalent topaddle.tensor_split
withaxis=0
whenx
‘s dimension is 1.- Parameters
-
x (Tensor) – A Tensor whose dimension must be greater than 0. The data type is bool, bfloat16, float16, float32, float64, uint8, int32 or int64.
num_or_indices (int|list|tuple) – If
num_or_indices
is an intn
,x
is split inton
sections. Ifnum_or_indices
is a list or tuple of integer indices,x
is split at each of the indices.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
list[Tensor], The list of segmented Tensors.
Examples
>>> import paddle >>> # x is a Tensor of shape [8] >>> x = paddle.rand([8]) >>> out0, out1 = paddle.hsplit(x, num_or_indices=2) >>> print(out0.shape) [4] >>> print(out1.shape) [4] >>> # x is a Tensor of shape [7, 8] >>> x = paddle.rand([7, 8]) >>> out0, out1 = paddle.hsplit(x, num_or_indices=2) >>> print(out0.shape) [7, 4] >>> print(out1.shape) [7, 4] >>> out0, out1, out2 = paddle.hsplit(x, num_or_indices=[1, 4]) >>> print(out0.shape) [7, 1] >>> print(out1.shape) [7, 3] >>> print(out2.shape) [7, 4]
-
hypot
(
y,
name=None
)
hypot¶
-
Calculate the length of the hypotenuse of a right-angle triangle. The equation is:
\[out = {\sqrt{x^2 + y^2}}\]- Parameters
-
x (Tensor) – The input Tensor, the data type is float32, float64, int32 or int64.
y (Tensor) – The input Tensor, the data type is float32, float64, int32 or int64.
name (str, optional) – Name for the operation (optional, default is None).For more information, please refer to Name.
- Returns
-
An N-D Tensor. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> x = paddle.to_tensor([3], dtype='float32') >>> y = paddle.to_tensor([4], dtype='float32') >>> res = paddle.hypot(x, y) >>> print(res) Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [5.])
-
hypot_
(
y,
name=None
)
hypot_¶
-
Inplace version of
hypot
API, the output Tensor will be inplaced with inputx
. Please refer to hypot.
-
i0
(
name=None
)
i0¶
-
The function used to calculate modified bessel function of order 0.
- Equation:
-
\[I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}\]
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.
Examples
>>> import paddle >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32") >>> paddle.i0(x) Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089])
-
i0_
(
name=None
)
i0_¶
-
Inplace version of
i0
API, the output Tensor will be inplaced with inputx
. Please refer to i0.
-
i0e
(
name=None
)
i0e¶
-
The function used to calculate exponentially scaled modified Bessel function of order 0.
- Equation:
-
\[\begin{split}I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\ I_{0e}(x) = e^{-|x|}I_0(x)\end{split}\]
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.
Examples
>>> import paddle >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32") >>> print(paddle.i0e(x)) Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0.99999994, 0.46575963, 0.30850831, 0.24300036, 0.20700191])
-
i1
(
name=None
)
i1¶
-
The function is used to calculate modified bessel function of order 1.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.
Examples
>>> import paddle >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32") >>> print(paddle.i1(x)) Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0. , 0.56515908, 1.59063685, 3.95337057, 9.75946712])
-
i1e
(
name=None
)
i1e¶
-
The function is used to calculate exponentially scaled modified Bessel function of order 1.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.
Examples
>>> import paddle >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32") >>> print(paddle.i1e(x)) Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0. , 0.20791042, 0.21526928, 0.19682673, 0.17875087])
-
imag
(
name=None
)
imag¶
-
Returns a new tensor containing imaginary values of input tensor.
- Parameters
-
x (Tensor) – the input tensor, its data type could be complex64 or complex128.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
a tensor containing imaginary values of the input tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor( ... [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]]) >>> print(x) Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True, [[(1+6j), (2+5j), (3+4j)], [(4+3j), (5+2j), (6+1j)]]) >>> imag_res = paddle.imag(x) >>> print(imag_res) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[6., 5., 4.], [3., 2., 1.]]) >>> imag_t = x.imag() >>> print(imag_t) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[6., 5., 4.], [3., 2., 1.]])
-
increment
(
value=1.0,
name=None
)
increment¶
-
The API is usually used for control flow to increment the data of
x
by an amountvalue
. Notice that the number of elements inx
must be equal to 1.- Parameters
-
x (Tensor) – A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
value (float, optional) – The amount to increment the data of
x
. Default: 1.0.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the elementwise-incremented tensor with the same shape and data type as
x
.
Examples
>>> import paddle >>> data = paddle.zeros(shape=[1], dtype='float32') >>> counter = paddle.increment(data) >>> counter Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [1.])
-
index_add
(
index,
axis,
value,
name=None
)
index_add¶
-
Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.
- Parameters
-
x (Tensor) – The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
index (Tensor) – The 1-D Tensor containing the indices to index. The data type of
index
must be int32 or int64.axis (int) – The dimension in which we index.
value (Tensor) – The tensor used to add the elements along the target axis.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, same dimension and dtype with x.
Examples
>>> >>> import paddle >>> paddle.device.set_device('gpu') >>> input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32") >>> index = paddle.to_tensor([0, 2], dtype="int32") >>> value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32") >>> outplace_res = paddle.index_add(input_tensor, index, 0, value) >>> print(outplace_res) Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[2., 2., 2.], [1., 1., 1.], [2., 2., 2.]])
-
index_add_
(
index,
axis,
value,
name=None
)
index_add_¶
-
Inplace version of
index_add
API, the output Tensor will be inplaced with inputx
. Please refer to index_add.Examples
>>> >>> import paddle >>> paddle.device.set_device('gpu') >>> input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32") >>> index = paddle.to_tensor([0, 2], dtype="int32") >>> value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32") >>> inplace_res = paddle.index_add_(input_tensor, index, 1, value) >>> print(inplace_res) Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[2., 1., 2.], [2., 1., 2.], [2., 1., 2.]])
-
index_fill
(
index,
axis,
value,
name=None
)
index_fill¶
-
Outplace version of
index_fill_
API, the output Tensor will be inplaced with inputx
. Please refer to index_fill_.Examples
>>> import paddle >>> input_tensor = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64') >>> index = paddle.to_tensor([0, 2], dtype="int32") >>> value = -1 >>> res = paddle.index_fill(input_tensor, index, 0, value) >>> print(input_tensor) Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> print(res) Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[-1, -1, -1], [ 4, 5, 6], [-1, -1, -1]])
-
index_fill_
(
index,
axis,
value,
name=None
)
index_fill_¶
-
Fill the elements of the input tensor with value by the specific axis and index.
- Parameters
-
x (Tensor) – The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
index (Tensor) – The 1-D Tensor containing the indices to index. The data type of
index
must be int32 or int64.axis (int) – The dimension along which to index.
value (float) – The tensor used to fill with.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, same dimension and dtype with x.
Examples
>>> import paddle >>> input_tensor = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64') >>> index = paddle.to_tensor([0, 2], dtype="int32") >>> value = -1 >>> res = paddle.index_fill_(input_tensor, index, 0, value) >>> print(input_tensor) Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[-1, -1, -1], [ 4, 5, 6], [-1, -1, -1]]) >>> print(res) Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[-1, -1, -1], [ 4, 5, 6], [-1, -1, -1]])
-
index_put
(
indices,
value,
accumulate=False,
name=None
)
index_put¶
-
Outplace version of
index_put_
API, the output Tensor will be inplaced with inputx
. Please refer to index_put.Examples
>>> import paddle >>> x = paddle.zeros([3, 3]) >>> value = paddle.ones([3]) >>> ix1 = paddle.to_tensor([0,1,2]) >>> ix2 = paddle.to_tensor([1,2,1]) >>> indices=(ix1,ix2) >>> out = paddle.index_put(x,indices,value) >>> print(x) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) >>> print(out) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 0.], [0., 0., 1.], [0., 1., 0.]])
-
index_put_
(
indices,
value,
accumulate=False,
name=None
)
index_put_¶
-
Puts values from the tensor values into the tensor x using the indices specified in indices (which is a tuple of Tensors). The expression paddle.index_put_(x, indices, values) is equivalent to tensor[indices] = values. Returns x. If accumulate is True, the elements in values are added to x. If accumulate is False, the behavior is undefined if indices contain duplicate elements.
- Parameters
-
x (Tensor) – The Source Tensor. Supported data types are int32, int64, float16, float32, float64, bool.
indices (Tuple of Tensor) – The tuple of Tensor containing the indices to index. The data type of
tensor in indices
must be int32, int64 or bool.value (Tensor) – The tensor used to be assigned to x.
accumulate (Bool, optional) – Whether the elements in values are added to x. Default: False.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, same dimension and dtype with x.
Examples
>>> import paddle >>> x = paddle.zeros([3, 3]) >>> value = paddle.ones([3]) >>> ix1 = paddle.to_tensor([0,1,2]) >>> ix2 = paddle.to_tensor([1,2,1]) >>> indices=(ix1,ix2) >>> out = paddle.index_put_(x,indices,value) >>> print(x) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 0.], [0., 0., 1.], [0., 1., 0.]]) >>> print(out) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 0.], [0., 0., 1.], [0., 1., 0.]])
-
index_sample
(
index
)
index_sample¶
-
IndexSample Layer
IndexSample OP returns the element of the specified location of X, and the location is specified by Index.
Given: X = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]] Index = [[0, 1, 3], [0, 2, 4]] Then: Out = [[1, 2, 4], [6, 8, 10]]
- Parameters
-
x (Tensor) – The source input tensor with 2-D shape. Supported data type is int32, int64, bfloat16, float16, float32, float64, complex64, complex128.
index (Tensor) – The index input tensor with 2-D shape, first dimension should be same with X. Data type is int32 or int64.
- Returns
-
The output is a tensor with the same shape as index.
- Return type
-
output (Tensor)
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], ... [5.0, 6.0, 7.0, 8.0], ... [9.0, 10.0, 11.0, 12.0]], dtype='float32') >>> index = paddle.to_tensor([[0, 1, 2], ... [1, 2, 3], ... [0, 0, 0]], dtype='int32') >>> target = paddle.to_tensor([[100, 200, 300, 400], ... [500, 600, 700, 800], ... [900, 1000, 1100, 1200]], dtype='int32') >>> out_z1 = paddle.index_sample(x, index) >>> print(out_z1.numpy()) [[1. 2. 3.] [6. 7. 8.] [9. 9. 9.]] >>> # Use the index of the maximum value by topk op >>> # get the value of the element of the corresponding index in other tensors >>> top_value, top_index = paddle.topk(x, k=2) >>> out_z2 = paddle.index_sample(target, top_index) >>> print(top_value.numpy()) [[ 4. 3.] [ 8. 7.] [12. 11.]] >>> print(top_index.numpy()) [[3 2] [3 2] [3 2]] >>> print(out_z2.numpy()) [[ 400 300] [ 800 700] [1200 1100]]
-
index_select
(
index,
axis=0,
name=None
)
index_select¶
-
Returns a new tensor which indexes the
input
tensor along dimensionaxis
using the entries inindex
which is a Tensor. The returned tensor has the same number of dimensions as the originalx
tensor. The dim-th dimension has the same size as the length ofindex
; other dimensions have the same size as in thex
tensor.- Parameters
-
x (Tensor) – The input Tensor to be operated. The data of
x
can be one of float16, float32, float64, int32, int64, complex64 and complex128.index (Tensor) – The 1-D Tensor containing the indices to index. The data type of
index
must be int32 or int64.axis (int, optional) – The dimension in which we index. Default: if None, the
axis
is 0.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
A Tensor with same data type as
x
. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], ... [5.0, 6.0, 7.0, 8.0], ... [9.0, 10.0, 11.0, 12.0]]) >>> index = paddle.to_tensor([0, 1, 1], dtype='int32') >>> out_z1 = paddle.index_select(x=x, index=index) >>> print(out_z1.numpy()) [[1. 2. 3. 4.] [5. 6. 7. 8.] [5. 6. 7. 8.]] >>> out_z2 = paddle.index_select(x=x, index=index, axis=1) >>> print(out_z2.numpy()) [[ 1. 2. 2.] [ 5. 6. 6.] [ 9. 10. 10.]]
-
inner
(
y,
name=None
)
inner¶
-
Inner product of two input Tensor.
Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.
- Parameters
-
x (Tensor) – An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y’s.
y (Tensor) – An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x’s.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.arange(1, 7).reshape((2, 3)).astype('float32') >>> y = paddle.arange(1, 10).reshape((3, 3)).astype('float32') >>> out = paddle.inner(x, y) >>> print(out) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[14. , 32. , 50. ], [32. , 77. , 122.]])
-
inverse
(
name=None
)
inverse¶
-
Takes the inverse of the square matrix. A square matrix is a matrix with the same number of rows and columns. The input can be a square matrix (2-D Tensor) or batches of square matrices.
- Parameters
-
x (Tensor) – The input tensor. The last two dimensions should be equal. When the number of dimensions is greater than 2, it is treated as batches of square matrix. The data type can be float32, float64, complex64, complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
- A Tensor holds the inverse of x. The shape and data type
-
is the same as x.
- Return type
-
Tensor
Examples
>>> import paddle >>> mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32') >>> inv = paddle.inverse(mat) >>> print(inv) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.50000000, 0. ], [0. , 0.50000000]])
-
is_complex
(
)
is_complex¶
-
Return whether x is a tensor of complex data type(complex64 or complex128).
- Parameters
-
x (Tensor) – The input tensor.
- Returns
-
True if the data type of the input is complex data type, otherwise false.
- Return type
-
bool
Examples
>>> import paddle >>> x = paddle.to_tensor([1 + 2j, 3 + 4j]) >>> print(paddle.is_complex(x)) True >>> x = paddle.to_tensor([1.1, 1.2]) >>> print(paddle.is_complex(x)) False >>> x = paddle.to_tensor([1, 2, 3]) >>> print(paddle.is_complex(x)) False
-
is_contiguous
(
)
is_contiguous¶
-
Variable don’t have ‘is_contiguous’ interface in static graph mode But this interface can greatly facilitate dy2static. So we give a warning here and return None.
-
is_empty
(
name=None
)
is_empty¶
-
Test whether a Tensor is empty.
- Parameters
-
x (Tensor) – The Tensor to be tested.
name (str, optional) – The default value is
None
. Normally users don’t have to set this parameter. For more information, please refer to Name .
- Returns
-
A bool scalar Tensor. True if ‘x’ is an empty Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> input = paddle.rand(shape=[4, 32, 32], dtype='float32') >>> res = paddle.is_empty(x=input) >>> print(res) Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, False)
-
is_floating_point
(
)
is_floating_point¶
-
Returns whether the dtype of x is one of paddle.float64, paddle.float32, paddle.float16, and paddle.bfloat16.
- Parameters
-
x (Tensor) – The input tensor.
- Returns
-
True if the dtype of x is floating type, otherwise false.
- Return type
-
bool
Examples
>>> import paddle >>> x = paddle.arange(1., 5., dtype='float32') >>> y = paddle.arange(1, 5, dtype='int32') >>> print(paddle.is_floating_point(x)) True >>> print(paddle.is_floating_point(y)) False
-
is_integer
(
)
is_integer¶
-
Return whether x is a tensor of integral data type.
- Parameters
-
x (Tensor) – The input tensor.
- Returns
-
True if the data type of the input is integer data type, otherwise false.
- Return type
-
bool
Examples
>>> import paddle >>> x = paddle.to_tensor([1 + 2j, 3 + 4j]) >>> print(paddle.is_integer(x)) False >>> x = paddle.to_tensor([1.1, 1.2]) >>> print(paddle.is_integer(x)) False >>> x = paddle.to_tensor([1, 2, 3]) >>> print(paddle.is_integer(x)) True
-
is_tensor
(
)
is_tensor¶
-
Tests whether input object is a paddle.Tensor.
- Parameters
-
x (object) – Object to test.
- Returns
-
A boolean value. True if
x
is a paddle.Tensor, otherwise False.
Examples
>>> import paddle >>> input1 = paddle.rand(shape=[2, 3, 5], dtype='float32') >>> check = paddle.is_tensor(input1) >>> print(check) True >>> input3 = [1, 4] >>> check = paddle.is_tensor(input3) >>> print(check) False
-
isclose
(
y,
rtol=1e-05,
atol=1e-08,
equal_nan=False,
name=None
)
isclose¶
-
Check if all \(x\) and \(y\) satisfy the condition:
\[\left| x - y \right| \leq atol + rtol \times \left| y \right|\]elementwise, for all elements of \(x\) and \(y\). The behaviour of this operator is analogous to \(numpy.isclose\), namely that it returns \(True\) if two tensors are elementwise equal within a tolerance.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64, complex64, complex128.
y (Tensor) – The input tensor, it’s data type should be float16, float32, float64, complex64, complex128.
rtol (rtoltype, optional) – The relative tolerance. Default: \(1e-5\) .
atol (atoltype, optional) – The absolute tolerance. Default: \(1e-8\) .
equal_nan (equalnantype, optional) – If \(True\) , then two \(NaNs\) will be compared as equal. Default: \(False\) .
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
The output tensor, it’s data type is bool.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([10000., 1e-07]) >>> y = paddle.to_tensor([10000.1, 1e-08]) >>> result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, ... equal_nan=False, name="ignore_nan") >>> print(result1) Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False]) >>> result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, ... equal_nan=True, name="equal_nan") >>> print(result2) Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False]) >>> x = paddle.to_tensor([1.0, float('nan')]) >>> y = paddle.to_tensor([1.0, float('nan')]) >>> result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, ... equal_nan=False, name="ignore_nan") >>> print(result1) Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False]) >>> result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, ... equal_nan=True, name="equal_nan") >>> print(result2) Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True, True])
-
isfinite
(
name=None
)
isfinite¶
-
Return whether every element of input tensor is finite number or not.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the bool result which shows every element of x whether it is finite number or not.
Examples
>>> import paddle >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')]) >>> out = paddle.isfinite(x) >>> out Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True , True , False, True , False, False])
-
isin
(
test_x,
assume_unique=False,
invert=False,
name=None
)
isin¶
-
Tests if each element of x is in test_x.
- Parameters
-
x (Tensor) – The input Tensor. Supported data type: ‘bfloat16’, ‘float16’, ‘float32’, ‘float64’, ‘int32’, ‘int64’.
test_x (Tensor) – Tensor values against which to test for each input element. Supported data type: ‘bfloat16’, ‘float16’, ‘float32’, ‘float64’, ‘int32’, ‘int64’.
assume_unique (bool, optional) – If True, indicates both x and test_x contain unique elements, which could make the calculation faster. Default: False.
invert (bool, optional) – Indicate whether to invert the boolean return tensor. If True, invert the results. Default: False.
name (str, optional) – Name for the operation (optional, default is None).For more information, please refer to Name.
- Returns
-
out (Tensor), The output Tensor with the same shape as x.
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> x = paddle.to_tensor([-0., -2.1, 2.5, 1.0, -2.1], dtype='float32') >>> test_x = paddle.to_tensor([-2.1, 2.5], dtype='float32') >>> res = paddle.isin(x, test_x) >>> print(res) Tensor(shape=[5], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True, True, False, True]) >>> x = paddle.to_tensor([-0., -2.1, 2.5, 1.0, -2.1], dtype='float32') >>> test_x = paddle.to_tensor([-2.1, 2.5], dtype='float32') >>> res = paddle.isin(x, test_x, invert=True) >>> print(res) Tensor(shape=[5], dtype=bool, place=Place(cpu), stop_gradient=True, [True, False, False, True, False]) >>> # Set `assume_unique` to True only when `x` and `test_x` contain unique values, otherwise the result may be incorrect. >>> x = paddle.to_tensor([0., 1., 2.]*20).reshape([20, 3]) >>> test_x = paddle.to_tensor([0., 1.]*20) >>> correct_result = paddle.isin(x, test_x, assume_unique=False) >>> print(correct_result) Tensor(shape=[20, 3], dtype=bool, place=Place(cpu), stop_gradient=True, [[True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False], [True , True , False]]) >>> incorrect_result = paddle.isin(x, test_x, assume_unique=True) >>> print(incorrect_result) Tensor(shape=[20, 3], dtype=bool, place=Place(gpu:0), stop_gradient=True, [[True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , True ], [True , True , False]])
-
isinf
(
name=None
)
isinf¶
-
Return whether every element of input tensor is +/-INF or not.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64, uint8, int8, int16, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the bool result which shows every element of x whether it is +/-INF or not.
Examples
>>> import paddle >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')]) >>> out = paddle.isinf(x) >>> out Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False, False, True , False, False, False])
-
isnan
(
name=None
)
isnan¶
-
Return whether every element of input tensor is NaN or not.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the bool result which shows every element of x whether it is NaN or not.
Examples
>>> import paddle >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')]) >>> out = paddle.isnan(x) >>> out Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True, [False, False, False, False, False, True , True ])
-
isneginf
(
name=None
)
isneginf¶
-
Tests if each element of input is negative infinity or not.
- Parameters
-
x (Tensor) – The input Tensor. Must be one of the following types: bfloat16, float16, float32, float64, int8, int16, int32, int64, uint8.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), The output Tensor. Each element of output indicates whether the input element is negative infinity or not.
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> x = paddle.to_tensor([-0., float('inf'), -2.1, -float('inf'), 2.5], dtype='float32') >>> res = paddle.isneginf(x) >>> print(res) Tensor(shape=[5], dtype=bool, place=Place(cpu), stop_gradient=True, [False, False, False, True, False])
-
isposinf
(
name=None
)
isposinf¶
-
Tests if each element of input is positive infinity or not.
- Parameters
-
x (Tensor) – The input Tensor. Must be one of the following types: bfloat16, float16, float32, float64, int8, int16, int32, int64, uint8.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), The output Tensor. Each element of output indicates whether the input element is positive infinity or not.
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> x = paddle.to_tensor([-0., float('inf'), -2.1, -float('inf'), 2.5], dtype='float32') >>> res = paddle.isposinf(x) >>> print(res) Tensor(shape=[5], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True, False, False, False])
-
isreal
(
name=None
)
isreal¶
-
Tests if each element of input is a real number or not.
- Parameters
-
x (Tensor) – The input Tensor.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), The output Tensor. Each element of output indicates whether the input element is a real number or not.
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> x = paddle.to_tensor([-0., -2.1, 2.5], dtype='float32') >>> res = paddle.isreal(x) >>> print(res) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [True, True, True]) >>> x = paddle.to_tensor([(-0.+1j), (-2.1+0.2j), (2.5-3.1j)]) >>> res = paddle.isreal(x) >>> print(res) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [False, False, False]) >>> x = paddle.to_tensor([(-0.+1j), (-2.1+0j), (2.5-0j)]) >>> res = paddle.isreal(x) >>> print(res) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True, True])
-
istft
(
n_fft,
hop_length=None,
win_length=None,
window=None,
center=True,
normalized=False,
onesided=True,
length=None,
return_complex=False,
name=None
)
istft¶
-
Inverse short-time Fourier transform (ISTFT).
Reconstruct time-domain signal from the giving complex input and window tensor when nonzero overlap-add (NOLA) condition is met:
\[\sum_{t = -\infty}^{\infty} \text{window}^2[n - t \times H]\ \neq \ 0, \ \text{for } all \ n\]Where: - \(t\): The \(t\)-th input window. - \(N\): Value of n_fft. - \(H\): Value of hop_length.
Result of istft expected to be the inverse of paddle.signal.stft, but it is not guaranteed to reconstruct a exactly realizable time-domain signal from a STFT complex tensor which has been modified (via masking or otherwise). Therefore, istft gives the [Griffin-Lim optimal estimate] (optimal in a least-squares sense) for the corresponding signal.
- Parameters
-
x (Tensor) – The input data which is a 2-dimensional or 3-dimensional complex Tensor with shape […, n_fft, num_frames].
n_fft (int) – The size of Fourier transform.
hop_length (int, optional) – Number of steps to advance between adjacent windows from time-domain signal and 0 < hop_length < win_length. Default: None ( treated as equal to n_fft//4)
win_length (int, optional) – The size of window. Default: None (treated as equal to n_fft)
window (Tensor, optional) – A 1-dimensional tensor of size win_length. It will be center padded to length n_fft if win_length < n_fft. It should be a real-valued tensor if return_complex is False. Default: None`(treated as a rectangle window with value equal to 1 of size `win_length).
center (bool, optional) – It means that whether the time-domain signal has been center padded. Default: True.
normalized (bool, optional) – Control whether to scale the output by \(1/sqrt(n_{fft})\). Default: False
onesided (bool, optional) – It means that whether the input STFT tensor is a half of the conjugate symmetry STFT tensor transformed from a real-valued signal and istft will return a real-valued tensor when it is set to True. Default: True.
length (int, optional) – Specify the length of time-domain signal. Default: `None`( treated as the whole length of signal).
return_complex (bool, optional) – It means that whether the time-domain signal is real-valued. If return_complex is set to True, onesided should be set to False cause the output is complex.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A tensor of least squares estimation of the reconstructed signal(s) with shape […, seq_length]
Examples
>>> import numpy as np >>> import paddle >>> from paddle.signal import stft, istft >>> paddle.seed(0) >>> # STFT >>> x = paddle.randn([8, 48000], dtype=paddle.float64) >>> y = stft(x, n_fft=512) >>> print(y.shape) [8, 257, 376] >>> # ISTFT >>> x_ = istft(y, n_fft=512) >>> print(x_.shape) [8, 48000] >>> np.allclose(x, x_) True
-
item
(
)
item¶
-
In order to be compatible with the item interface introduced by the dynamic graph, it does nothing but returns self. It will check that the shape must be a 1-D tensor
-
kron
(
y,
name=None
)
kron¶
-
Compute the Kronecker product of two tensors, a composite tensor made of blocks of the second tensor scaled by the first. Assume that the rank of the two tensors, $X$ and $Y$ are the same, if necessary prepending the smallest with ones. If the shape of $X$ is [$r_0$, $r_1$, …, $r_N$] and the shape of $Y$ is [$s_0$, $s_1$, …, $s_N$], then the shape of the output tensor is [$r_{0}s_{0}$, $r_{1}s_{1}$, …, $r_{N}s_{N}$]. The elements are products of elements from $X$ and $Y$. The equation is: $$ output[k_{0}, k_{1}, …, k_{N}] = X[i_{0}, i_{1}, …, i_{N}] * Y[j_{0}, j_{1}, …, j_{N}] $$ where $$ k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, …, N $$
- Parameters
-
x (Tensor) – the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
y (Tensor) – the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64') >>> y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64') >>> out = paddle.kron(x, y) >>> out Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 , 2 , 4 , 6 ], [4 , 5 , 6 , 8 , 10, 12], [7 , 8 , 9 , 14, 16, 18], [3 , 6 , 9 , 4 , 8 , 12], [12, 15, 18, 16, 20, 24], [21, 24, 27, 28, 32, 36]])
-
kthvalue
(
k,
axis=None,
keepdim=False,
name=None
)
kthvalue¶
-
Find values and indices of the k-th smallest at the axis.
- Parameters
-
x (Tensor) – A N-D Tensor with type float16, float32, float64, int32, int64.
k (int) – The k for the k-th smallest number to look for along the axis.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
keepdim (bool, optional) – Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimensions is one fewer than x since the axis is squeezed. Default is False.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
tuple(Tensor), return the values and indices. The value data type is the same as the input x. The indices data type is int64.
Examples
>>> import paddle >>> x = paddle.randn((2,3,2)) >>> print(x) >>> Tensor(shape=[2, 3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[[ 0.11855337, -0.30557564], [-0.09968963, 0.41220093], [ 1.24004936, 1.50014710]], [[ 0.08612321, -0.92485696], [-0.09276631, 1.15149164], [-1.46587241, 1.22873247]]]) >>> >>> y = paddle.kthvalue(x, 2, 1) >>> print(y) >>> (Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.11855337, 0.41220093], [-0.09276631, 1.15149164]]), Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 1], [1, 1]])) >>>
-
lcm
(
y,
name=None
)
lcm¶
-
Computes the element-wise least common multiple (LCM) of input |x| and |y|. Both x and y must have integer types.
Note
lcm(0,0)=0, lcm(0, y)=0
If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is int32, int64.
y (Tensor) – An N-D Tensor, the data type is int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor, the data type is the same with input.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> x1 = paddle.to_tensor(12) >>> x2 = paddle.to_tensor(20) >>> paddle.lcm(x1, x2) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 60) >>> x3 = paddle.arange(6) >>> paddle.lcm(x3, x2) Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 20, 20, 60, 20, 20]) >>> x4 = paddle.to_tensor(0) >>> paddle.lcm(x4, x2) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 0) >>> paddle.lcm(x4, x4) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 0) >>> x5 = paddle.to_tensor(-20) >>> paddle.lcm(x1, x5) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 60)
-
lcm_
(
y,
name=None
)
lcm_¶
-
Inplace version of
lcm
API, the output Tensor will be inplaced with inputx
. Please refer to lcm.
-
ldexp
(
y,
name=None
)
ldexp¶
-
Compute the result of multiplying x by 2 to the power of y. The equation is:
\[out = x * 2^{y}\]- Parameters
-
x (Tensor) – The input Tensor, the data type is float32, float64, int32 or int64.
y (Tensor) – A Tensor of exponents, typically integers.
name (str, optional) – Name for the operation (optional, default is None).For more information, please refer to Name.
- Returns
-
An N-D Tensor. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> # example1 >>> x = paddle.to_tensor([1, 2, 3], dtype='float32') >>> y = paddle.to_tensor([2, 3, 4], dtype='int32') >>> res = paddle.ldexp(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [4. , 16., 48.]) >>> # example2 >>> x = paddle.to_tensor([1, 2, 3], dtype='float32') >>> y = paddle.to_tensor([2], dtype='int32') >>> res = paddle.ldexp(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [4. , 8. , 12.])
-
ldexp_
(
y,
name=None
)
ldexp_¶
-
Inplace version of
polygamma
API, the output Tensor will be inplaced with inputx
. Please refer to polygamma.
-
lerp
(
y,
weight,
name=None
)
lerp¶
-
Does a linear interpolation between x and y based on weight.
- Equation:
-
\[lerp(x, y, weight) = x + weight * (y - x).\]
- Parameters
-
x (Tensor) – An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
y (Tensor) – An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
weight (float|Tensor) – The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor, the shape and data type is the same with input.
- Return type
-
out (Tensor)
Example
>>> import paddle >>> x = paddle.arange(1., 5., dtype='float32') >>> y = paddle.empty([4], dtype='float32') >>> y.fill_(10.) >>> out = paddle.lerp(x, y, 0.5) >>> out Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [5.50000000, 6. , 6.50000000, 7. ])
-
lerp_
(
y,
weight,
name=None
)
lerp_¶
-
Inplace version of
lerp
API, the output Tensor will be inplaced with inputx
. Please refer to lerp.
-
less_equal
(
y,
name=None
)
less_equal¶
-
Returns the truth value of \(x <= y\) elementwise, which is equivalent function to the overloaded operator <=.
Note
The output has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, uint8, int8, int16, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, uint8, int8, int16, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The output shape is same as input
x
. The output data type is bool. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.to_tensor([1, 3, 2]) >>> result1 = paddle.less_equal(x, y) >>> print(result1) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [True , True , False])
-
less_equal_
(
y,
name=None
)
less_equal_¶
-
Inplace version of
less_equal
API, the output Tensor will be inplaced with inputx
. Please refer to less_equal.
-
less_than
(
y,
name=None
)
less_than¶
-
Returns the truth value of \(x < y\) elementwise, which is equivalent function to the overloaded operator <.
Note
The output has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, uint8, int8, int16, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, uint8, int8, int16, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The output shape is same as input
x
. The output data type is bool. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.to_tensor([1, 3, 2]) >>> result1 = paddle.less_than(x, y) >>> print(result1) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True , False])
-
less_than_
(
y,
name=None
)
less_than_¶
-
Inplace version of
less_than
API, the output Tensor will be inplaced with inputx
. Please refer to less_than.
-
lgamma
(
name=None
)
lgamma¶
-
Calculates the lgamma of the given input tensor, element-wise.
This operator performs elementwise lgamma for input $X$. \(out = log\Gamma(x)\)
- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.lgamma(x) >>> out Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [1.31452453, 1.76149762, 2.25271273, 1.09579790])
-
lgamma_
(
name=None
)
lgamma_¶
-
Inplace version of
lgamma
API, the output Tensor will be inplaced with inputx
. Please refer to lgamma.
-
log
(
name=None
)
log¶
-
Calculates the natural log of the given input Tensor, element-wise.
\[Out = \ln(x)\]- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64, complex64, complex128.
name (str|None) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
The natural log of the input Tensor computed element-wise.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = [[2, 3, 4], [7, 8, 9]] >>> x = paddle.to_tensor(x, dtype='float32') >>> print(paddle.log(x)) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.69314718, 1.09861231, 1.38629436], [1.94591010, 2.07944155, 2.19722462]])
-
log10
(
name=None
)
log10¶
-
Calculates the log to the base 10 of the given input tensor, element-wise.
\[Out = \log_10_x\]- Parameters
-
x (Tensor) – Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64, complex64, complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The log to the base 10 of the input Tensor computed element-wise.
- Return type
-
Tensor
Examples
>>> import paddle >>> # example 1: x is a float >>> x_i = paddle.to_tensor([[1.0], [10.0]]) >>> res = paddle.log10(x_i) >>> res Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.], [1.]]) >>> # example 2: x is float32 >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float32') >>> paddle.to_tensor(x_i) >>> res = paddle.log10(x_i) >>> res Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [1.]) >>> # example 3: x is float64 >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float64') >>> paddle.to_tensor(x_i) >>> res = paddle.log10(x_i) >>> res Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True, [1.])
-
log10_
(
name=None
)
log10_¶
-
Inplace version of
log10
API, the output Tensor will be inplaced with inputx
. Please refer to log10.
-
log1p
(
name=None
)
log1p¶
-
Calculates the natural log of the given input tensor, element-wise.
\[Out = \ln(x+1)\]- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64, complex64, complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the natural log of the input Tensor computed element-wise.
Examples
>>> import paddle >>> data = paddle.to_tensor([[0], [1]], dtype='float32') >>> res = paddle.log1p(data) >>> res Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[0. ], [0.69314718]])
-
log1p_
(
name=None
)
log1p_¶
-
Inplace version of
log1p
API, the output Tensor will be inplaced with inputx
. Please refer to log1p.
-
log2
(
name=None
)
log2¶
-
Calculates the log to the base 2 of the given input tensor, element-wise.
\[Out = \log_2x\]- Parameters
-
x (Tensor) – Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64, complex64, complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The log to the base 2 of the input Tensor computed element-wise.
- Return type
-
Tensor
Examples
>>> import paddle >>> # example 1: x is a float >>> x_i = paddle.to_tensor([[1.0], [2.0]]) >>> res = paddle.log2(x_i) >>> res Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.], [1.]]) >>> # example 2: x is float32 >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float32') >>> paddle.to_tensor(x_i) >>> res = paddle.log2(x_i) >>> res Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [1.]) >>> # example 3: x is float64 >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float64') >>> paddle.to_tensor(x_i) >>> res = paddle.log2(x_i) >>> res Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True, [1.])
-
log2_
(
name=None
)
log2_¶
-
Inplace version of
log2
API, the output Tensor will be inplaced with inputx
. Please refer to log2.
-
log_
(
name=None
)
log_¶
-
Inplace version of
log
API, the output Tensor will be inplaced with inputx
. Please refer to log.
-
logaddexp
(
y,
name=None
)
logaddexp¶
-
Elementwise LogAddExp Operator. Add of exponentiations of the inputs The equation is:
\[Out=log(X.exp()+Y.exp())\]$X$ the tensor of any dimension. $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
There are two cases for this operator:
The shape of $Y$ is the same with $X$.
The shape of $Y$ is a continuous subsequence of $X$.
For case 2:
Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
For example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,) shape(X) = (2, 3, 4, 5), shape(Y) = (5,) shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2 shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
- Parameters
-
x (Tensor) – Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
y (Tensor) – Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
name (string, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
Examples
>>> import paddle >>> x = paddle.to_tensor([-1, -2, -3], 'float64') >>> y = paddle.to_tensor([-1], 'float64') >>> z = paddle.logaddexp(x, y) >>> print(z) Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True, [-0.30685282, -0.68673831, -0.87307199])
-
logcumsumexp
(
axis=None,
dtype=None,
name=None
)
logcumsumexp¶
-
The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
For summation index j given by axis and other indices i, the result is
\[logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})\]Note
The first element of the result is the same as the first element of the input.
- Parameters
-
x (Tensor) – The input tensor.
axis (int, optional) – The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
dtype (str, optional) – The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the result of logcumsumexp operator.
Examples
>>> import paddle >>> data = paddle.arange(12, dtype='float64') >>> data = paddle.reshape(data, (3, 4)) >>> y = paddle.logcumsumexp(data) >>> y Tensor(shape=[12], dtype=float64, place=Place(cpu), stop_gradient=True, [0. , 1.31326169 , 2.40760596 , 3.44018970 , 4.45191440 , 5.45619332 , 6.45776285 , 7.45833963 , 8.45855173 , 9.45862974 , 10.45865844, 11.45866900]) >>> y = paddle.logcumsumexp(data, axis=0) >>> y Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True, [[0. , 1. , 2. , 3. ], [4.01814993 , 5.01814993 , 6.01814993 , 7.01814993 ], [8.01847930 , 9.01847930 , 10.01847930, 11.01847930]]) >>> y = paddle.logcumsumexp(data, axis=-1) >>> y Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True, [[0. , 1.31326169 , 2.40760596 , 3.44018970 ], [4. , 5.31326169 , 6.40760596 , 7.44018970 ], [8. , 9.31326169 , 10.40760596, 11.44018970]]) >>> y = paddle.logcumsumexp(data, dtype='float64') >>> assert y.dtype == paddle.float64
-
logical_and
(
y,
out=None,
name=None
)
logical_and¶
-
Compute element-wise logical AND on
x
andy
, and returnout
.out
is N-dim booleanTensor
. Each element ofout
is calculated by\[out = x \&\& y\]Note
paddle.logical_and
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float16, float32, float64, complex64, complex128.
y (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float16, float32, float64, complex64, complex128.
out (Tensor, optional) – The
Tensor
that specifies the output of the operator, which can be anyTensor
that has been created in the program. The default value is None, and a newTensor
will be created to save the output.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with
x
.
Examples
>>> import paddle >>> x = paddle.to_tensor([True]) >>> y = paddle.to_tensor([True, False, True, False]) >>> res = paddle.logical_and(x, y) >>> print(res) Tensor(shape=[4], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False, True , False])
-
logical_and_
(
y,
name=None
)
logical_and_¶
-
Inplace version of
logical_and
API, the output Tensor will be inplaced with inputx
. Please refer to logical_and.
-
logical_not
(
out=None,
name=None
)
logical_not¶
-
logical_not
operator computes element-wise logical NOT onx
, and returnsout
.out
is N-dim booleanVariable
. Each element ofout
is calculated by\[out = !x\]Note
paddle.logical_not
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float16, float32, or float64, complex64, complex128.
out (Tensor) – The
Tensor
that specifies the output of the operator, which can be anyTensor
that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.name (str|None) – The default value is None. Normally there is no need for users to set this property. For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with
x
.
Examples
>>> import paddle >>> x = paddle.to_tensor([True, False, True, False]) >>> res = paddle.logical_not(x) >>> print(res) Tensor(shape=[4], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True , False, True ])
-
logical_not_
(
name=None
)
logical_not_¶
-
Inplace version of
logical_not
API, the output Tensor will be inplaced with inputx
. Please refer to logical_not.
-
logical_or
(
y,
out=None,
name=None
)
logical_or¶
-
logical_or
operator computes element-wise logical OR onx
andy
, and returnsout
.out
is N-dim booleanTensor
. Each element ofout
is calculated by\[out = x || y\]Note
paddle.logical_or
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float16, float32, float64, complex64, complex128.
y (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float16, float32, float64, complex64, complex128.
out (Tensor) – The
Variable
that specifies the output of the operator, which can be anyTensor
that has been created in the program. The default value is None, and a newTensor
will be created to save the output.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with
x
.
Examples
>>> import paddle >>> x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1]) >>> y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2]) >>> res = paddle.logical_or(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True, [[True , True ], [True , False]])
-
logical_or_
(
y,
name=None
)
logical_or_¶
-
Inplace version of
logical_or
API, the output Tensor will be inplaced with inputx
. Please refer to logical_or.
-
logical_xor
(
y,
out=None,
name=None
)
logical_xor¶
-
logical_xor
operator computes element-wise logical XOR onx
andy
, and returnsout
.out
is N-dim booleanTensor
. Each element ofout
is calculated by\[out = (x || y) \&\& !(x \&\& y)\]Note
paddle.logical_xor
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, int32, int64, float16, float32, float64, complex64, complex128.
y (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, int32, int64, float16, float32, float64, complex64, complex128.
out (Tensor) – The
Tensor
that specifies the output of the operator, which can be anyTensor
that has been created in the program. The default value is None, and a newTensor
will be created to save the output.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with
x
.
Examples
>>> import paddle >>> x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1]) >>> y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2]) >>> res = paddle.logical_xor(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True, [[False, True ], [True , False]])
-
logical_xor_
(
y,
name=None
)
logical_xor_¶
-
Inplace version of
logical_xor
API, the output Tensor will be inplaced with inputx
. Please refer to logical_xor.
-
logit
(
eps=None,
name=None
)
logit¶
-
This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.
\[logit(x) = ln(\frac{x}{1 - x})\]where
\[\begin{split}x_i= \left\{\begin{array}{rcl} x_i & &\text{if } eps == Default \\ eps & &\text{if } x_i < eps \\ x_i & &\text{if } eps <= x_i <= 1-eps \\ 1-eps & &\text{if } x_i > 1-eps \end{array}\right.\end{split}\]- Parameters
-
x (Tensor) – The input Tensor with data type bfloat16, float16, float32, float64.
eps (float, optional) – the epsilon for input clamp bound. Default is None.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
A Tensor with the same data type and shape as
x
. - Return type
-
out(Tensor)
Examples
>>> import paddle >>> x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095]) >>> out1 = paddle.logit(x) >>> out1 Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [-1.02785587, -4.53624487, -0.95440406, -1.32673466, 1.44676447])
-
logit_
(
eps=None,
name=None
)
logit_¶
-
Inplace version of
logit
API, the output Tensor will be inplaced with inputx
. Please refer to logit.
-
logsumexp
(
axis=None,
keepdim=False,
name=None
)
logsumexp¶
-
Calculates the log of the sum of exponentials of
x
alongaxis
.\[logsumexp(x) = \log\sum exp(x)\]- Parameters
-
x (Tensor) – The input Tensor with data type float16, float32 or float64, which have no more than 4 dimensions.
axis (int|list|tuple, optional) – The axis along which to perform logsumexp calculations.
axis
should be int, list(int) or tuple(int). Ifaxis
is a list/tuple of dimension(s), logsumexp is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) . Ifaxis
is None, logsumexp is calculated along all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keep_dim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of logsumexp along
axis
ofx
, with the same data type asx
.
Examples:
>>> import paddle >>> x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]]) >>> out1 = paddle.logsumexp(x) >>> out1 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 3.46912265) >>> out2 = paddle.logsumexp(x, 1) >>> out2 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [2.15317822, 3.15684605])
-
lstsq
(
y,
rcond=None,
driver=None,
name=None
)
lstsq¶
-
Computes a solution to the least squares problem of a system of linear equations.
- Parameters
-
x (Tensor) – A tensor with shape
(*, M, N)
, the data type of the input Tensorx
should be one of float32, float64.y (Tensor) – A tensor with shape
(*, M, K)
, the data type of the input Tensory
should be one of float32, float64.rcond (float, optional) – The default value is None. A float pointing number used to determine the effective rank of
x
. Ifrcond
is None, it will be set to max(M, N) times the machine precision of x_dtype.driver (str, optional) – The default value is None. The name of LAPACK method to be used. For CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only valid driver is ‘gels’. If
driver
is None, ‘gelsy’ is used for CPU inputs and ‘gels’ for CUDA inputs.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A tuple of 4 Tensors which is (
solution
,residuals
,rank
,singular_values
).solution
is a tensor with shape(*, N, K)
, meaning the least squares solution.residuals
is a tensor with shape(*, K)
, meaning the squared residuals of the solutions, which is computed when M > N and every matrix inx
is full-rank, otherwise return an empty tensor.rank
is a tensor with shape(*)
, meaning the ranks of the matrices inx
, which is computed whendriver
in (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor.singular_values
is a tensor with shape(*, min(M, N))
, meaning singular values of the matrices inx
, which is computed whendriver
in (‘gelsd’, ‘gelss’), otherwise return an empty tensor. - Return type
-
Tuple
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]]) >>> y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]]) >>> results = paddle.linalg.lstsq(x, y, driver="gelsd") >>> print(results[0]) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.78350395, -0.22165027, -0.62371236], [-0.11340097, 0.78866047, 1.14948535]]) >>> print(results[1]) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [19.81443405, 10.43814468, 30.56185532]) >>> print(results[2]) Tensor(shape=[], dtype=int32, place=Place(cpu), stop_gradient=True, 2) >>> print(results[3]) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [9.03455734, 1.54167950]) >>> x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]]) >>> y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]]) >>> results = paddle.linalg.lstsq(x, y, driver="gels") >>> print(results[0]) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.39386186, 0.10230169, 0.93606132], [ 0.10741688, -0.29028130, 0.11892584], [-0.05115093, 0.51918161, -0.19948851]]) >>> print(results[1]) Tensor(shape=[0], dtype=float32, place=Place(cpu), stop_gradient=True, [])
-
lu
(
pivot=True,
get_infos=False,
name=None
)
lu¶
-
Computes the LU factorization of an N-D(N>=2) matrix x.
Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and upper triangular matrix U are combined to a single LU matrix.
Pivoting is done if pivot is set to True. P mat can be get by pivots:
ones = eye(rows) #eye matrix of rank rows for i in range(cols): swap(ones[i], ones[pivots[i]]) return ones
- Parameters
-
X (Tensor) – the tensor to factor of N-dimensions(N>=2).
pivot (bool, optional) – controls whether pivoting is done. Default: True.
get_infos (bool, optional) – if set to True, returns an info IntTensor. Default: False.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
factorization (Tensor), LU matrix, the factorization of input X.
pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). pivots stores all the intermediate transpositions of rows. The final permutation perm could be reconstructed by this, details refer to upper example.
infos (IntTensor, optional), if get_infos is True, this is a tensor of size (∗(N-2)) where non-zero values indicate whether factorization for the matrix or each minibatch has succeeded or failed.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64') >>> lu,p,info = paddle.linalg.lu(x, get_infos=True) >>> print(lu) Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[5. , 6. ], [0.20000000, 0.80000000], [0.60000000, 0.50000000]]) >>> print(p) Tensor(shape=[2], dtype=int32, place=Place(cpu), stop_gradient=True, [3, 3]) >>> print(info) Tensor(shape=[1], dtype=int32, place=Place(cpu), stop_gradient=True, [0]) >>> P,L,U = paddle.linalg.lu_unpack(lu,p) >>> print(P) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]]) >>> print(L) Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[1. , 0. ], [0.20000000, 1. ], [0.60000000, 0.50000000]]) >>> print(U) Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[5. , 6. ], [0. , 0.80000000]]) >>> # one can verify : X = P @ L @ U ;
-
lu_unpack
(
y,
unpack_ludata=True,
unpack_pivots=True,
name=None
)
lu_unpack¶
-
Unpack L U and P to single matrix tensor . unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .
P mat can be get by pivots:
ones = eye(rows) #eye matrix of rank rows for i in range(cols): swap(ones[i], ones[pivots[i]])
- Parameters
-
x (Tensor) – The LU tensor get from paddle.linalg.lu, which is combined by L and U.
y (Tensor) – Pivots get from paddle.linalg.lu.
unpack_ludata (bool, optional) – whether to unpack L and U from x. Default: True.
unpack_pivots (bool, optional) – whether to unpack permutation matrix P from Pivtos. Default: True.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
P (Tensor), Permutation matrix P of lu factorization.
L (Tensor), The lower triangular matrix tensor of lu factorization.
U (Tensor), The upper triangular matrix tensor of lu factorization.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64') >>> lu,p,info = paddle.linalg.lu(x, get_infos=True) >>> print(lu) Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[5. , 6. ], [0.20000000, 0.80000000], [0.60000000, 0.50000000]]) >>> print(p) Tensor(shape=[2], dtype=int32, place=Place(cpu), stop_gradient=True, [3, 3]) >>> print(info) Tensor(shape=[1], dtype=int32, place=Place(cpu), stop_gradient=True, [0]) >>> P,L,U = paddle.linalg.lu_unpack(lu,p) >>> print(P) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]]) >>> print(L) Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[1. , 0. ], [0.20000000, 1. ], [0.60000000, 0.50000000]]) >>> print(U) Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[5. , 6. ], [0. , 0.80000000]]) >>> # one can verify : X = P @ L @ U ;
-
masked_fill
(
mask,
value,
name=None
)
masked_fill¶
-
Fills elements of self tensor with value where mask is True. The shape of mask must be broadcastable with the shape of the underlying tensor.
- Parameters
-
x (Tensor) – The Destination Tensor. Supported data types are float, double, int, int64_t,float16 and bfloat16.
mask (Tensor) – The boolean tensor indicate the position to be filled. The data type of mask must be bool.
value (Scalar or 0-D Tensor) – The value used to fill the target tensor. Supported data types are float, double, int, int64_t,float16 and bfloat16.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Tensor, same dimension and dtype with x.
Examples
>>> >>> import paddle >>> x = paddle.ones((3, 3), dtype="float32") >>> mask = paddle.to_tensor([[True, True, False]]) >>> print(mask) Tensor(shape=[1, 3], dtype=bool, place=Place(gpu:0), stop_gradient=True, [[True , True , False]]) >>> out = paddle.masked_fill(x, mask, 2) >>> print(out) Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[2., 2., 1.], [2., 2., 1.], [2., 2., 1.]])
-
masked_fill_
(
mask,
value,
name=None
)
masked_fill_¶
-
Inplace version of
masked_fill
API, the output Tensor will be inplaced with inputx
. Please refer to masked_fill.Examples
>>> >>> import paddle >>> x = paddle.ones((3, 3), dtype="float32") >>> mask = paddle.to_tensor([[True, False, False]]) >>> out = paddle.masked_fill_(x, mask, 2) >>> print(out) Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[2., 1., 1.], [2., 1., 1.], [2., 1., 1.]])
-
masked_scatter
(
mask,
value,
name=None
)
masked_scatter¶
-
Copies elements from value into x tensor at positions where the mask is True.
Elements from source are copied into x starting at position 0 of value and continuing in order one-by-one for each occurrence of mask being True. The shape of mask must be broadcastable with the shape of the underlying tensor. The value should have at least as many elements as the number of ones in mask.
- Parameters
-
x (Tensor) – An N-D Tensor. The data type is
float16
,float32
,float64
,int32
,int64
orbfloat16
.mask (Tensor) – The boolean tensor indicate the position to be filled. The data type of mask must be bool.
value (Tensor) – The value used to fill the target tensor. Supported data types are same as x.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A reshaped Tensor with the same data type as
x
.
Examples
>>> import paddle >>> paddle.seed(2048) >>> x = paddle.randn([2, 2]) >>> print(x) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[-1.24725831, 0.03843464], [-0.31660911, 0.04793844]]) >>> mask = paddle.to_tensor([[True, True], [False, False]]) >>> value = paddle.to_tensor([1, 2, 3, 4, 5,], dtype="float32") >>> out = paddle.masked_scatter(x, mask, value) >>> print(out) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[1, 2], [-0.31660911, 0.04793844]])
-
masked_scatter_
(
mask,
value,
name=None
)
masked_scatter_¶
-
Inplace version of
masked_scatter
API, the output Tensor will be inplaced with inputx
. Please refer to masked_scatter.
-
masked_select
(
mask,
name=None
)
masked_select¶
-
Returns a new 1-D tensor which indexes the input tensor according to the
mask
which is a tensor with data type of bool.- Parameters
-
x (Tensor) – The input Tensor, the data type can be int32, int64, uint16, float16, float32, float64.
mask (Tensor) – The Tensor containing the binary mask to index with, it’s data type is bool.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
A 1-D Tensor which is the same data type as
x
.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], ... [5.0, 6.0, 7.0, 8.0], ... [9.0, 10.0, 11.0, 12.0]]) >>> mask = paddle.to_tensor([[True, False, False, False], ... [True, True, False, False], ... [True, False, False, False]]) >>> out = paddle.masked_select(x, mask) >>> print(out.numpy()) [1. 5. 6. 9.]
-
matmul
(
y,
transpose_x=False,
transpose_y=False,
name=None
)
matmul¶
-
Applies matrix multiplication to two tensors. matmul follows the complete broadcast rules, and its behavior is consistent with np.matmul.
Currently, the input tensors’ number of dimensions can be any, matmul can be used to achieve the dot, matmul and batchmatmul.
The actual behavior depends on the shapes of \(x\), \(y\) and the flag values of
transpose_x
,transpose_y
. Specifically:If a transpose flag is specified, the last two dimensions of the tensor are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor is ndim-1 of shape \([D]\), then for \(x\) it is treated as \([1, D]\), whereas for \(y\) it is the opposite: It is treated as \([D, 1]\).
The multiplication behavior depends on the dimensions of x and y. Specifically:
If both tensors are 1-dimensional, the dot product result is obtained.
If both tensors are 2-dimensional, the matrix-matrix product is obtained.
If the x is 1-dimensional and the y is 2-dimensional, a 1 is prepended to its dimension in order to conduct the matrix multiply. After the matrix multiply, the prepended dimension is removed.
If the x is 2-dimensional and y is 1-dimensional, the matrix-vector product is obtained.
If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is obtained. If the first argument is 1-dimensional, a 1 is prepended to its dimension in order to conduct the batched matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (exclude the last two dimensions) dimensions are broadcasted according the broadcast rule. For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor, out will be a (j, k, n, p) tensor.
- Parameters
-
x (Tensor) – The input tensor which is a Tensor.
y (Tensor) – The input tensor which is a Tensor.
transpose_x (bool, optional) – Whether to transpose \(x\) before multiplication. Default is False.
transpose_y (bool, optional) – Whether to transpose \(y\) before multiplication. Default is False.
name (str, optional) – If set None, the layer will be named automatically. For more information, please refer to Name. Default is None.
- Returns
-
The output Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> # vector * vector >>> x = paddle.rand([10]) >>> y = paddle.rand([10]) >>> z = paddle.matmul(x, y) >>> print(z.shape) [] >>> # matrix * vector >>> x = paddle.rand([10, 5]) >>> y = paddle.rand([5]) >>> z = paddle.matmul(x, y) >>> print(z.shape) [10] >>> # batched matrix * broadcasted vector >>> x = paddle.rand([10, 5, 2]) >>> y = paddle.rand([2]) >>> z = paddle.matmul(x, y) >>> print(z.shape) [10, 5] >>> # batched matrix * batched matrix >>> x = paddle.rand([10, 5, 2]) >>> y = paddle.rand([10, 2, 5]) >>> z = paddle.matmul(x, y) >>> print(z.shape) [10, 5, 5] >>> # batched matrix * broadcasted matrix >>> x = paddle.rand([10, 1, 5, 2]) >>> y = paddle.rand([1, 3, 2, 5]) >>> z = paddle.matmul(x, y) >>> print(z.shape) [10, 3, 5, 5]
-
matrix_power
(
n,
name=None
)
matrix_power¶
-
Computes the n-th power of a square matrix or a batch of square matrices.
Let \(X\) be a square matrix or a batch of square matrices, \(n\) be an exponent, the equation should be:
\[Out = X ^ {n}\]Specifically,
If n > 0, it returns the matrix or a batch of matrices raised to the power of n.
If n = 0, it returns the identity matrix or a batch of identity matrices.
If n < 0, it returns the inverse of each matrix (if invertible) raised to the power of abs(n).
- Parameters
-
x (Tensor) – A square matrix or a batch of square matrices to be raised to power n. Its shape should be [*, M, M], where * is zero or more batch dimensions. Its data type should be float32 or float64.
n (int) – The exponent. It can be any positive, negative integer or zero.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, The n-th power of the matrix (or the batch of matrices) x. Its data type should be the same as that of x.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2, 3], ... [1, 4, 9], ... [1, 8, 27]], dtype='float64') >>> print(paddle.linalg.matrix_power(x, 2)) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[6. , 34. , 102.], [14. , 90. , 282.], [36. , 250., 804.]]) >>> print(paddle.linalg.matrix_power(x, 0)) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> print(paddle.linalg.matrix_power(x, -2)) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[ 12.91666667, -12.75000000, 2.83333333 ], [-7.66666667 , 8. , -1.83333333 ], [ 1.80555556 , -1.91666667 , 0.44444444 ]])
-
max
(
axis=None,
keepdim=False,
name=None
)
max¶
-
Computes the maximum of tensor elements over the given axis.
Note
The difference between max and amax is: If there are multiple maximum elements, amax evenly distributes gradient between these equal values, while max propagates gradient to all of them.
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64.
axis (int|list|tuple, optional) – The axis along which the maximum is computed. If
None
, compute the maximum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim(x), x.ndim(x))\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of maximum on the specified axis of input tensor, it’s data type is the same as x.
Examples
>>> import paddle >>> # data_x is a Tensor with shape [2, 4] >>> # the axis is a int element >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], ... [0.1, 0.2, 0.6, 0.7]], ... dtype='float64', stop_gradient=False) >>> result1 = paddle.max(x) >>> result1.backward() >>> result1 Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False, 0.90000000) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0., 0., 0., 1.], [0., 0., 0., 0.]]) >>> x.clear_grad() >>> result2 = paddle.max(x, axis=0) >>> result2.backward() >>> result2 Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False, [0.20000000, 0.30000000, 0.60000000, 0.90000000]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[1., 1., 0., 1.], [0., 0., 1., 0.]]) >>> x.clear_grad() >>> result3 = paddle.max(x, axis=-1) >>> result3.backward() >>> result3 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [0.90000000, 0.70000000]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0., 0., 0., 1.], [0., 0., 0., 1.]]) >>> x.clear_grad() >>> result4 = paddle.max(x, axis=1, keepdim=True) >>> result4.backward() >>> result4 Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False, [[0.90000000], [0.70000000]]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0., 0., 0., 1.], [0., 0., 0., 1.]]) >>> # data_y is a Tensor with shape [2, 2, 2] >>> # the axis is list >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]], ... [[5.0, 6.0], [7.0, 8.0]]], ... dtype='float64', stop_gradient=False) >>> result5 = paddle.max(y, axis=[1, 2]) >>> result5.backward() >>> result5 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [4., 8.]) >>> y.grad Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False, [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]) >>> y.clear_grad() >>> result6 = paddle.max(y, axis=[0, 1]) >>> result6.backward() >>> result6 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [7., 8.]) >>> y.grad Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False, [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]])
-
maximum
(
y,
name=None
)
maximum¶
-
Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
\[out = max(x, y)\]Note
paddle.maximum
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [7, 8]]) >>> y = paddle.to_tensor([[3, 4], [5, 6]]) >>> res = paddle.maximum(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[3, 4], [7, 8]]) >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]]) >>> y = paddle.to_tensor([3, 0, 4]) >>> res = paddle.maximum(x, y) >>> print(res) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[3, 2, 4], [3, 2, 4]]) >>> x = paddle.to_tensor([2, 3, 5], dtype='float32') >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32') >>> res = paddle.maximum(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [2. , nan, nan]) >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32') >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32') >>> res = paddle.maximum(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [5. , 3. , inf.])
-
mean
(
axis=None,
keepdim=False,
name=None
)
mean¶
-
Computes the mean of the input tensor’s elements along
axis
.- Parameters
-
x (Tensor) – The input Tensor with data type float32, float64.
axis (int|list|tuple, optional) – The axis along which to perform mean calculations.
axis
should be int, list(int) or tuple(int). Ifaxis
is a list/tuple of dimension(s), mean is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) . Ifaxis
is None, mean is calculated over all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of average along
axis
ofx
, with the same data type asx
.
Examples
>>> import paddle >>> x = paddle.to_tensor([[[1., 2., 3., 4.], ... [5., 6., 7., 8.], ... [9., 10., 11., 12.]], ... [[13., 14., 15., 16.], ... [17., 18., 19., 20.], ... [21., 22., 23., 24.]]]) >>> out1 = paddle.mean(x) >>> print(out1.numpy()) 12.5 >>> out2 = paddle.mean(x, axis=-1) >>> print(out2.numpy()) [[ 2.5 6.5 10.5] [14.5 18.5 22.5]] >>> out3 = paddle.mean(x, axis=-1, keepdim=True) >>> print(out3.numpy()) [[[ 2.5] [ 6.5] [10.5]] [[14.5] [18.5] [22.5]]] >>> out4 = paddle.mean(x, axis=[0, 2]) >>> print(out4.numpy()) [ 8.5 12.5 16.5]
-
median
(
axis=None,
keepdim=False,
mode='avg',
name=None
)
median¶
-
Compute the median along the specified axis.
- Parameters
-
x (Tensor) – The input Tensor, it’s data type can be float16, float32, float64, int32, int64.
axis (int, optional) – The axis along which to perform median calculations
axis
should be int.axis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
is less than 0, it works the same way as \(axis + D\). Ifaxis
is None, median is calculated over all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.mode (str, optional) – Whether to use mean or min operation to calculate the median values when the input tensor has an even number of elements in the dimension
axis
. Support ‘avg’ and ‘min’. Default is ‘avg’.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor or tuple of Tensor. If
mode
== ‘avg’, the result will be the tensor of median values; Ifmode
== ‘min’ andaxis
is None, the result will be the tensor of median values; Ifmode
== ‘min’ andaxis
is not None, the result will be a tuple of two tensors containing median values and their indices.When
mode
== ‘avg’, if data type ofx
is float64, data type of median values will be float64, otherwise data type of median values will be float32. Whenmode
== ‘min’, the data type of median values will be the same asx
. The data type of indices will be int64.
Examples
>>> import paddle >>> import numpy as np >>> x = paddle.arange(12).reshape([3, 4]) >>> print(x) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 1 , 2 , 3 ], [4 , 5 , 6 , 7 ], [8 , 9 , 10, 11]]) >>> y1 = paddle.median(x) >>> print(y1) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 5.50000000) >>> y2 = paddle.median(x, axis=0) >>> print(y2) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [4., 5., 6., 7.]) >>> y3 = paddle.median(x, axis=1) >>> print(y3) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1.50000000, 5.50000000, 9.50000000]) >>> y4 = paddle.median(x, axis=0, keepdim=True) >>> print(y4) Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[4., 5., 6., 7.]]) >>> y5 = paddle.median(x, mode='min') >>> print(y5) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 5) >>> median_value, median_indices = paddle.median(x, axis=1, mode='min') >>> print(median_value) Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 5, 9]) >>> print(median_indices) Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 1, 1]) >>> # cases containing nan values >>> x = paddle.to_tensor(np.array([[1,float('nan'),3,float('nan')],[1,2,3,4],[float('nan'),1,2,3]])) >>> y6 = paddle.median(x, axis=-1, keepdim=True) >>> print(y6) Tensor(shape=[3, 1], dtype=float64, place=Place(cpu), stop_gradient=True, [[nan ], [2.50000000], [nan ]]) >>> median_value, median_indices = paddle.median(x, axis=1, keepdim=True, mode='min') >>> print(median_value) Tensor(shape=[3, 1], dtype=float64, place=Place(cpu), stop_gradient=True, [[nan], [2. ], [nan]]) >>> print(median_indices) Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[1], [1], [0]])
-
min
(
axis=None,
keepdim=False,
name=None
)
min¶
-
Computes the minimum of tensor elements over the given axis
Note
The difference between min and amin is: If there are multiple minimum elements, amin evenly distributes gradient between these equal values, while min propagates gradient to all of them.
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64.
axis (int|list|tuple, optional) – The axis along which the minimum is computed. If
None
, compute the minimum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim, x.ndim)\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of minimum on the specified axis of input tensor, it’s data type is the same as input’s Tensor.
Examples
>>> import paddle >>> # data_x is a Tensor with shape [2, 4] >>> # the axis is a int element >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], ... [0.1, 0.2, 0.6, 0.7]], ... dtype='float64', stop_gradient=False) >>> result1 = paddle.min(x) >>> result1.backward() >>> result1 Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False, 0.10000000) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0., 0., 0., 0.], [1., 0., 0., 0.]]) >>> x.clear_grad() >>> result2 = paddle.min(x, axis=0) >>> result2.backward() >>> result2 Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False, [0.10000000, 0.20000000, 0.50000000, 0.70000000]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[0., 0., 1., 0.], [1., 1., 0., 1.]]) >>> x.clear_grad() >>> result3 = paddle.min(x, axis=-1) >>> result3.backward() >>> result3 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [0.20000000, 0.10000000]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[1., 0., 0., 0.], [1., 0., 0., 0.]]) >>> x.clear_grad() >>> result4 = paddle.min(x, axis=1, keepdim=True) >>> result4.backward() >>> result4 Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False, [[0.20000000], [0.10000000]]) >>> x.grad Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False, [[1., 0., 0., 0.], [1., 0., 0., 0.]]) >>> # data_y is a Tensor with shape [2, 2, 2] >>> # the axis is list >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]], ... [[5.0, 6.0], [7.0, 8.0]]], ... dtype='float64', stop_gradient=False) >>> result5 = paddle.min(y, axis=[1, 2]) >>> result5.backward() >>> result5 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [1., 5.]) >>> y.grad Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False, [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]) >>> y.clear_grad() >>> result6 = paddle.min(y, axis=[0, 1]) >>> result6.backward() >>> result6 Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False, [1., 2.]) >>> y.grad Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False, [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]])
-
minimum
(
y,
name=None
)
minimum¶
-
Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
\[out = min(x, y)\]Note
paddle.minimum
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [7, 8]]) >>> y = paddle.to_tensor([[3, 4], [5, 6]]) >>> res = paddle.minimum(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 2], [5, 6]]) >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]]) >>> y = paddle.to_tensor([3, 0, 4]) >>> res = paddle.minimum(x, y) >>> print(res) Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[[1, 0, 3], [1, 0, 3]]]) >>> x = paddle.to_tensor([2, 3, 5], dtype='float32') >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32') >>> res = paddle.minimum(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1. , nan, nan]) >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64') >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64') >>> res = paddle.minimum(x, y) >>> print(res) Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True, [ 1. , -inf., 5. ])
-
mm
(
mat2,
name=None
)
mm¶
-
Applies matrix multiplication to two tensors.
Currently, the input tensors’ rank can be any, but when the rank of any inputs is bigger than 3, this two inputs’ rank should be equal.
Also note that if the raw tensor \(x\) or \(mat2\) is rank-1 and nontransposed, the prepended or appended dimension \(1\) will be removed after matrix multiplication.
- Parameters
-
input (Tensor) – The input tensor which is a Tensor.
mat2 (Tensor) – The input tensor which is a Tensor.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The product Tensor.
- Return type
-
Tensor
* example 1: input: [B, ..., M, K], mat2: [B, ..., K, N] out: [B, ..., M, N] * example 2: input: [B, M, K], mat2: [B, K, N] out: [B, M, N] * example 3: input: [B, M, K], mat2: [K, N] out: [B, M, N] * example 4: input: [M, K], mat2: [K, N] out: [M, N] * example 5: input: [B, M, K], mat2: [K] out: [B, M] * example 6: input: [K], mat2: [K] out: [1]
Examples
>>> import paddle >>> input = paddle.arange(1, 7).reshape((3, 2)).astype('float32') >>> mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32') >>> out = paddle.mm(input, mat2) >>> out Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[11., 14., 17., 20.], [23., 30., 37., 44.], [35., 46., 57., 68.]])
-
mod
(
y,
name=None
)
mod¶
-
Mod two tensors element-wise. The equation is:
\[out = x \% y\]Note
paddle.remainder
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .And mod, floor_mod are all functions with the same name
- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([2, 3, 8, 7]) >>> y = paddle.to_tensor([1, 5, 3, 3]) >>> z = paddle.remainder(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1]) >>> z = paddle.floor_mod(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1]) >>> z = paddle.mod(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1])
-
mod_
(
y,
name=None
)
mod_¶
-
Inplace version of
floor_mod_
API, the output Tensor will be inplaced with inputx
. Please refer to floor_mod_.
-
mode
(
axis=- 1,
keepdim=False,
name=None
)
mode¶
-
Used to find values and indices of the modes at the optional axis.
- Parameters
-
x (Tensor) – Tensor, an input N-D Tensor with type float32, float64, int32, int64.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is -1.
keepdim (bool, optional) – Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimensions is one fewer than x since the axis is squeezed. Default is False.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
tuple (Tensor), return the values and indices. The value data type is the same as the input x. The indices data type is int64.
Examples
>>> import paddle >>> tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32) >>> res = paddle.mode(tensor, 2) >>> print(res) (Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[2., 3.], [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[2, 2], [2, 1]]))
-
moveaxis
(
source,
destination,
name=None
)
moveaxis¶
-
Move the axis of tensor from
source
position todestination
position.Other axis that have not been moved remain their original order.
- Parameters
-
x (Tensor) – The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
source (int|tuple|list) –
source
position of axis that will be moved. Each element must be unique and integer.destination (int|tuple|list(int)) –
destination
position of axis that has been moved. Each element must be unique and integer.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Tensor, A new tensor whose axis have been moved.
Examples
>>> import paddle >>> x = paddle.ones([3, 2, 4]) >>> outshape = paddle.moveaxis(x, [0, 1], [1, 2]).shape >>> print(outshape) [4, 3, 2] >>> x = paddle.ones([2, 3]) >>> outshape = paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x) >>> print(outshape) [3, 2]
-
multi_dot
(
name=None
)
multi_dot¶
-
Multi_dot is an operator that calculates multiple matrix multiplications.
Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not support batched inputs.
The input tensor in [x] must be 2-D except for the first and last can be 1-D. If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it is treated as a column vector of shape(n, 1).
If the first and last tensor are 2-D matrix, then the output is also 2-D matrix, otherwise the output is a 1-D vector.
Multi_dot will select the lowest cost multiplication order for calculation. The cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c. Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively, we can calculate the cost of different multiplication orders as follows: - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000 - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000
In this case, multiplying B and C first, then multiply A, which is 5 times faster than sequential calculation.
- Parameters
-
x ([Tensor]) – The input tensors which is a list Tensor.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> # A * B >>> A = paddle.rand([3, 4]) >>> B = paddle.rand([4, 5]) >>> out = paddle.linalg.multi_dot([A, B]) >>> print(out.shape) [3, 5] >>> # A * B * C >>> A = paddle.rand([10, 5]) >>> B = paddle.rand([5, 8]) >>> C = paddle.rand([8, 7]) >>> out = paddle.linalg.multi_dot([A, B, C]) >>> print(out.shape) [10, 7]
-
multigammaln
(
p,
name=None
)
multigammaln¶
-
This function computes the log of multivariate gamma, also sometimes called the generalized gamma.
- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
p (int) – The dimension of the space of integration.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The values of the log multivariate gamma at the given tensor x.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> x = paddle.to_tensor([2.5, 3.5, 4, 6.5, 7.8, 10.23, 34.25]) >>> p = 2 >>> out = paddle.multigammaln(x, p) >>> print(out) Tensor(shape=[7], dtype=float32, place=Place(cpu), stop_gradient=True, [0.85704780 , 2.46648574 , 3.56509781 , 11.02241898 , 15.84497833 , 26.09257698 , 170.68318176])
-
multigammaln_
(
p,
name=None
)
multigammaln_¶
-
Inplace version of
multigammaln_
API, the output Tensor will be inplaced with inputx
. Please refer to multigammaln.
-
multinomial
(
num_samples=1,
replacement=False,
name=None
)
multinomial¶
-
Returns a Tensor filled with random values sampled from a Multinomical distribution. The input
x
is a tensor with probabilities for generating the random number. Each element inx
should be larger or equal to 0, but not all 0.replacement
indicates whether it is a replaceable sample. Ifreplacement
is True, a category can be sampled more than once.- Parameters
-
x (Tensor) – A tensor with probabilities for generating the random number. The data type should be float32, float64.
num_samples (int, optional) – Number of samples, default is 1.
replacement (bool, optional) – Whether it is a replaceable sample, default is False.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor filled with sampled category index after
num_samples
times samples. - Return type
-
Tensor
Examples
>>> import paddle >>> paddle.seed(100) # on CPU device >>> x = paddle.rand([2,4]) >>> print(x) >>> Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.55355281, 0.20714243, 0.01162981, 0.51577556], [0.36369765, 0.26091650, 0.18905126, 0.56219709]]) >>> >>> paddle.seed(200) # on CPU device >>> out1 = paddle.multinomial(x, num_samples=5, replacement=True) >>> print(out1) >>> Tensor(shape=[2, 5], dtype=int64, place=Place(cpu), stop_gradient=True, [[3, 3, 0, 0, 0], [3, 3, 3, 1, 0]]) >>> >>> # out2 = paddle.multinomial(x, num_samples=5) >>> # InvalidArgumentError: When replacement is False, number of samples >>> # should be less than non-zero categories >>> paddle.seed(300) # on CPU device >>> out3 = paddle.multinomial(x, num_samples=3) >>> print(out3) >>> Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[3, 0, 1], [3, 1, 0]]) >>>
-
multiplex
(
index,
name=None
)
multiplex¶
-
Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
If the input of this OP contains \(m\) Tensors, where \(I_{i}\) means the i-th input Tensor, \(i\) between \([0,m)\) .
And \(O\) means the output, where \(O[i]\) means the i-th row of the output, then the output satisfies that \(O[i] = I_{index[i]}[i]\) .
For Example:
Given: inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]], [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]], [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]], [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]] index = [[3],[0],[1],[2]] out = [[3,0,3,4], # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4] [0,1,3,4], # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4] [1,2,4,2], # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2] [2,3,3,4]] # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
- Parameters
-
inputs (list) – The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64, complex64, complex128. All input Tensor shapes should be the same and rank must be at least 2.
index (Tensor) – Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of multiplex OP, with data type being float32, float64, int32, int64.
- Return type
-
Tensor
Examples
>>> import paddle >>> img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32) >>> img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32) >>> inputs = [img1, img2] >>> index = paddle.to_tensor([[1], [0]], dtype=paddle.int32) >>> res = paddle.multiplex(inputs, index) >>> print(res) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[5., 6.], [3., 4.]])
-
multiply
(
y,
name=None
)
multiply¶
-
multiply two tensors element-wise. The equation is:
\[out = x * y\]Note
Supported shape of
x
andy
for this operator: 1. x.shape == y.shape. 2. x.shape could be the continuous subsequence of y.shape.paddle.multiply
supports broadcasting. If you would like to know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, its data type should be one of float32, float64, int32, int64, bool.
y (Tensor) – the input tensor, its data type should be one of float32, float64, int32, int64, bool.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If
x
,y
have different shapes and are “broadcastable”, the resulting tensor shape is the shape ofx
andy
after broadcasting. Ifx
,y
have the same shape, its shape is the same asx
andy
.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [3, 4]]) >>> y = paddle.to_tensor([[5, 6], [7, 8]]) >>> res = paddle.multiply(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[5 , 12], [21, 32]]) >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]]) >>> y = paddle.to_tensor([2]) >>> res = paddle.multiply(x, y) >>> print(res) Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[[2, 4, 6], [2, 4, 6]]])
-
multiply_
(
y,
name=None
)
multiply_¶
-
Inplace version of
multiply
API, the output Tensor will be inplaced with inputx
. Please refer to multiply.
-
mv
(
vec,
name=None
)
mv¶
-
Performs a matrix-vector product of the matrix x and the vector vec.
- Parameters
-
x (Tensor) – A tensor with shape \([M, N]\) , The data type of the input Tensor x should be one of float32, float64.
vec (Tensor) – A tensor with shape \([N]\) , The data type of the input Tensor x should be one of float32, float64.
name (str, optional) – Normally there is no need for user to set this property. For more information, please refer to Name. Default is None.
- Returns
-
The tensor which is producted by x and vec.
- Return type
-
Tensor
Examples
>>> # x: [M, N], vec: [N] >>> # paddle.mv(x, vec) # out: [M] >>> import paddle >>> x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64") >>> vec = paddle.to_tensor([3, 5, 1]).astype("float64") >>> out = paddle.mv(x, vec) >>> print(out) Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True, [14., 10.])
-
nan_to_num
(
nan=0.0,
posinf=None,
neginf=None,
name=None
)
nan_to_num¶
-
Replaces NaN, positive infinity, and negative infinity values in input tensor.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float32, float64.
nan (float, optional) – the value to replace NaNs with. Default is 0.
posinf (float, optional) – if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
neginf (float, optional) – if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Results of nan_to_num operation input Tensor
x
. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32') >>> out1 = paddle.nan_to_num(x) >>> out1 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 0. , 0.30000001 , 340282346638528859811704183484516925440., -340282346638528859811704183484516925440.]) >>> out2 = paddle.nan_to_num(x, nan=1) >>> out2 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 1. , 0.30000001 , 340282346638528859811704183484516925440., -340282346638528859811704183484516925440.]) >>> out3 = paddle.nan_to_num(x, posinf=5) >>> out3 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 0. , 0.30000001 , 5. , -340282346638528859811704183484516925440.]) >>> out4 = paddle.nan_to_num(x, nan=10, neginf=-99) >>> out4 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 10. , 0.30000001 , 340282346638528859811704183484516925440., -99. ])
-
nan_to_num_
(
nan=0.0,
posinf=None,
neginf=None,
name=None
)
nan_to_num_¶
-
Inplace version of
nan_to_num
API, the output Tensor will be inplaced with inputx
. Please refer to nan_to_num.
-
nanmean
(
axis=None,
keepdim=False,
name=None
)
nanmean¶
-
Compute the arithmetic mean along the specified axis, ignoring NaNs.
- Parameters
-
x (Tensor) – The input Tensor with data type uint16, float16, float32, float64.
axis (int|list|tuple, optional) – The axis along which to perform nanmean calculations.
axis
should be int, list(int) or tuple(int). Ifaxis
is a list/tuple of dimension(s), nanmean is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) . Ifaxis
is None, nanmean is calculated over all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of arithmetic mean along
axis
ofx
, with the same data type asx
.
Examples
>>> import paddle >>> # x is a 2-D Tensor: >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9], ... [0.1, 0.2, float('-nan'), 0.7]]) >>> out1 = paddle.nanmean(x) >>> out1 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.44999996) >>> out2 = paddle.nanmean(x, axis=0) >>> out2 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.10000000, 0.25000000, 0.50000000, 0.79999995]) >>> out3 = paddle.nanmean(x, axis=0, keepdim=True) >>> out3 Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.10000000, 0.25000000, 0.50000000, 0.79999995]]) >>> out4 = paddle.nanmean(x, axis=1) >>> out4 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [0.56666666, 0.33333334]) >>> out5 = paddle.nanmean(x, axis=1, keepdim=True) >>> out5 Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.56666666], [0.33333334]]) >>> # y is a 3-D Tensor: >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]], ... [[5, 6], [float('-nan'), 8]]]) >>> out6 = paddle.nanmean(y, axis=[1, 2]) >>> out6 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [2.66666675, 6.33333349]) >>> out7 = paddle.nanmean(y, axis=[0, 1]) >>> out7 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [3., 6.])
-
nanmedian
(
axis=None,
keepdim=False,
mode='avg',
name=None
)
nanmedian¶
-
Compute the median along the specified axis, while ignoring NaNs.
If the valid count of elements is a even number, the average value of both elements in the middle is calculated as the median.
- Parameters
-
x (Tensor) – The input Tensor, it’s data type can be int32, int64, float16, bfloat16, float32, float64.
axis (None|int|list|tuple, optional) – The axis along which to perform median calculations
axis
should be int or list of int.axis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
is less than 0, it works the same way as \(axis + D\). Ifaxis
is None, median is calculated over all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.mode (str, optional) – Whether to use mean or min operation to calculate the nanmedian values when the input tensor has an even number of non-NaN elements along the dimension
axis
. Support ‘avg’ and ‘min’. Default is ‘avg’.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor or tuple of Tensor. If
mode
== ‘min’ andaxis
is int, the result will be a tuple of two tensors (nanmedian value and nanmedian index). Otherwise, only nanmedian value will be returned.
Examples
>>> import paddle >>> x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]]) >>> y1 = x.nanmedian() >>> print(y1.numpy()) 2.0 >>> y2 = x.nanmedian(0) >>> print(y2.numpy()) [0. 1.5 2.5] >>> y3 = x.nanmedian(0, keepdim=True) >>> print(y3.numpy()) [[0. 1.5 2.5]] >>> y4 = x.nanmedian((0, 1)) >>> print(y4.numpy()) 2.0 >>> y5 = x.nanmedian(mode='min') >>> print(y5.numpy()) 2.0 >>> y6, y6_index = x.nanmedian(0, mode='min') >>> print(y6.numpy()) [0. 1. 2.] >>> print(y6_index.numpy()) [1 1 1] >>> y7, y7_index = x.nanmedian(1, mode='min') >>> print(y7.numpy()) [2. 1.] >>> print(y7_index.numpy()) [1 1] >>> y8 = x.nanmedian((0,1), mode='min') >>> print(y8.numpy()) 2.0
-
nanquantile
(
q,
axis=None,
keepdim=False,
interpolation='linear'
)
nanquantile¶
-
Compute the quantile of the input as if NaN values in input did not exist. If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.
- Parameters
-
x (Tensor) – The input Tensor, it’s data type can be float32, float64, int32, int64.
q (int|float|list|Tensor) – The q for calculate quantile, which should be in range [0, 1]. If q is a list or a 1-D Tensor, each element of q will be calculated and the first dimension of output is same to the number of
q
. If q is a 0-D Tensor, it will be treated as an integer or float.axis (int|list, optional) – The axis along which to calculate quantile.
axis
should be int or list of int.axis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
is less than 0, it works the same way as \(axis + D\). Ifaxis
is a list, quantile is calculated over all elements of given axises. Ifaxis
is None, quantile is calculated over all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.interpolation (str, optional) – The interpolation method to use when the desired quantile falls between two data points. Must be one of linear, higher, lower, midpoint and nearest. Default is linear.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of quantile along
axis
ofx
.
Examples
>>> import paddle >>> x = paddle.to_tensor( ... [[0, 1, 2, 3, 4], ... [5, 6, 7, 8, 9]], ... dtype="float32") >>> x[0,0] = float("nan") >>> y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1]) >>> print(y1) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 5.) >>> y2 = paddle.nanquantile(x, q=0.5, axis=1) >>> print(y2) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [2.50000000, 7. ]) >>> y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0) >>> print(y3) Tensor(shape=[2, 5], dtype=float32, place=Place(cpu), stop_gradient=True, [[5. , 2.50000000, 3.50000000, 4.50000000, 5.50000000], [5. , 3.50000000, 4.50000000, 5.50000000, 6.50000000]]) >>> y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True) >>> print(y4) Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[3.40000000], [8.20000000]]) >>> nan = paddle.full(shape=[2, 3], fill_value=float("nan")) >>> y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True) >>> print(y5) Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[nan], [nan]])
-
nansum
(
axis=None,
dtype=None,
keepdim=False,
name=None
)
nansum¶
-
Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
axis (int|list|tuple, optional) – The dimensions along which the nansum is performed. If
None
, nansum all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).dtype (str, optional) – The dtype of output Tensor. The default value is None, the dtype of output is the same as input Tensor x.
keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Results of summation operation on the specified axis of input Tensor x,
- Return type
-
Tensor
Examples
>>> import paddle >>> # x is a Tensor with following elements: >>> # [[nan, 0.3, 0.5, 0.9] >>> # [0.1, 0.2, -nan, 0.7]] >>> # Each example is followed by the corresponding output tensor. >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9], ... [0.1, 0.2, float('-nan'), 0.7]],dtype="float32") >>> out1 = paddle.nansum(x) >>> out1 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 2.69999981) >>> out2 = paddle.nansum(x, axis=0) >>> out2 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.10000000, 0.50000000, 0.50000000, 1.59999990]) >>> out3 = paddle.nansum(x, axis=-1) >>> out3 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [1.70000005, 1. ]) >>> out4 = paddle.nansum(x, axis=1, keepdim=True) >>> out4 Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.70000005], [1. ]]) >>> # y is a Tensor with shape [2, 2, 2] and elements as below: >>> # [[[1, nan], [3, 4]], >>> # [[5, 6], [-nan, 8]]] >>> # Each example is followed by the corresponding output tensor. >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]], ... [[5, 6], [float('-nan'), 8]]]) >>> out5 = paddle.nansum(y, axis=[1, 2]) >>> out5 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [8. , 19.]) >>> out6 = paddle.nansum(y, axis=[0, 1]) >>> out6 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [9. , 18.])
- property ndim
-
Returns the dimension of current Variable
- Returns
-
the dimension
Examples
>>> import paddle >>> paddle.enable_static() >>> # create a static Variable >>> x = paddle.static.data(name='x', shape=[3, 2, 1]) >>> # print the dimension of the Variable >>> print(x.ndim) 3
-
ndimension
(
)
ndimension¶
-
Returns the dimension of current Variable
- Returns
-
the dimension
Examples
>>> import paddle >>> paddle.enable_static() >>> # create a static Variable >>> x = paddle.static.data(name='x', shape=[3, 2, 1]) >>> # print the dimension of the Variable >>> print(x.ndimension()) 3
-
neg
(
name=None
)
neg¶
-
This function computes the negative of the Tensor elementwisely.
- Parameters
-
x (Tensor) – Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The negative of input Tensor. The shape and data type are the same with input Tensor.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.neg(x) >>> out Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 0.40000001, 0.20000000, -0.10000000, -0.30000001])
-
neg_
(
name=None
)
neg_¶
-
Inplace version of
neg
API, the output Tensor will be inplaced with inputx
. Please refer to neg.
-
nextafter
(
y,
name=None
)
nextafter¶
-
Return the next floating-point value after input towards other, elementwise. The shapes of input and other must be broadcastable.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float32, float64.
y (Tensor) – An N-D Tensor, the data type is float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor, the shape and data type is the same with input.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0])) >>> out Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [1.00000012, 1.99999988])
-
nonzero
(
as_tuple=False
)
nonzero¶
-
Return a tensor containing the indices of all non-zero elements of the input tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension in input, each containing the indices (in that dimension) of all non-zero elements of input. Given a n-Dimensional input tensor with shape [x_1, x_2, …, x_n], If as_tuple is False, we can get a output tensor with shape [z, n], where z is the number of all non-zero elements in the input tensor. If as_tuple is True, we can get a 1-D tensor tuple of length n, and the shape of each 1-D tensor is [z, 1].
- Parameters
-
x (Tensor) – The input tensor variable.
as_tuple (bool, optional) – Return type, Tensor or tuple of Tensor.
- Returns
-
Tensor. The data type is int64.
Examples
>>> import paddle >>> x1 = paddle.to_tensor([[1.0, 0.0, 0.0], ... [0.0, 2.0, 0.0], ... [0.0, 0.0, 3.0]]) >>> x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0]) >>> out_z1 = paddle.nonzero(x1) >>> print(out_z1) Tensor(shape=[3, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0], [1, 1], [2, 2]]) >>> out_z1_tuple = paddle.nonzero(x1, as_tuple=True) >>> for out in out_z1_tuple: ... print(out) Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[0], [1], [2]]) Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[0], [1], [2]]) >>> out_z2 = paddle.nonzero(x2) >>> print(out_z2) Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[1], [3]]) >>> out_z2_tuple = paddle.nonzero(x2, as_tuple=True) >>> for out in out_z2_tuple: ... print(out) Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[1], [3]])
-
norm
(
p=None,
axis=None,
keepdim=False,
name=None
)
norm¶
-
Returns the matrix norm (the Frobenius norm, the nuclear norm and p-norm) or vector norm (the 1-norm, the Euclidean or 2-norm, and in general the p-norm) of a given tensor.
Whether the function calculates the vector norm or the matrix norm is determined as follows:
If axis is of type int, calculate the vector norm.
If axis is a two-dimensional array, calculate the matrix norm.
If axis is None, x is compressed into a one-dimensional vector and the vector norm is calculated.
Paddle supports the following norms:
porder
norm for matrices
norm for vectors
None(default)
frobenius norm
2_norm
fro
frobenius norm
not support
nuc
nuclear norm
not support
inf
max(sum(abs(x), dim=1))
max(abs(x))
-inf
min(sum(abs(x), dim=1))
min(abs(x))
0
not support
sum(x != 0)
1
max(sum(abs(x), dim=0))
as below
-1
min(sum(abs(x), dim=0))
as below
2
The maximum singular value of a matrix consisting of axis.
as below
-2
The minimum singular value of a matrix consisting of axis.
as below
- other int
-
or float
not support
sum(abs(x)^{porder})^ {(1 / porder)}
- Parameters
-
x (Tensor) – The input tensor could be N-D tensor, and the input data type could be float32 or float64.
p (int|float|string, optional) – Order of the norm. Supported values are fro, nuc, 0, ±1, ±2, ±inf and any real number yielding the corresponding p-norm. Default value is None.
axis (int|list|tuple, optional) – The axis on which to apply norm operation. If axis is int or list(int)/tuple(int) with only one element, the vector norm is computed over the axis. If axis < 0, the dimension to norm operation is rank(input) + axis. If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis. Default value is None.
keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have fewer dimension than the
input
unlesskeepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
results of norm operation on the specified axis of input tensor, it’s data type is the same as input’s Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12 >>> print(x) Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[[-12., -11., -10., -9. ], [-8. , -7. , -6. , -5. ], [-4. , -3. , -2. , -1. ]], [[ 0. , 1. , 2. , 3. ], [ 4. , 5. , 6. , 7. ], [ 8. , 9. , 10., 11.]]]) >>> # compute frobenius norm along last two dimensions. >>> out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1]) >>> print(out_fro) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [17.43559647, 16.91153526, 16.73320007, 16.91153526]) >>> # compute 2-order vector norm along last dimension. >>> out_pnorm = paddle.linalg.norm(x, p=2, axis=-1) >>> print(out_pnorm) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[21.11871147, 13.19090557, 5.47722578 ], [3.74165750 , 11.22497177, 19.13112640]]) >>> # compute 2-order norm along [0,1] dimension. >>> out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1]) >>> print(out_pnorm) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [15.75857544, 14.97978878, 14.69693947, 14.97978973]) >>> # compute inf-order norm >>> out_pnorm = paddle.linalg.norm(x, p=float("inf")) >>> print(out_pnorm) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 12.) >>> out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0) >>> print(out_pnorm) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[12., 11., 10., 9. ], [8. , 7. , 6. , 7. ], [8. , 9. , 10., 11.]]) >>> # compute -inf-order norm >>> out_pnorm = paddle.linalg.norm(x, p=-float("inf")) >>> print(out_pnorm) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.) >>> out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0) >>> print(out_pnorm) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 2., 3.], [4., 5., 6., 5.], [4., 3., 2., 1.]])
-
normal_
(
mean=0.0,
std=1.0,
name=None
)
normal_¶
-
This is the inplace version of api
normal
, which returns a Tensor filled with random values sampled from a normal distribution. The output Tensor will be inplaced with inputx
. Please refer to api_tensor_normal.- Parameters
-
x (Tensor) – The input tensor to be filled with random values.
mean (float|Tensor, optional) – The mean of the output Tensor’s normal distribution. If
mean
is float, all elements of the output Tensor shared the same mean. Ifmean
is a Tensor(data type supports float32, float64), it has per-element means. Default is 0.0std (float|Tensor, optional) – The standard deviation of the output Tensor’s normal distribution. If
std
is float, all elements of the output Tensor shared the same standard deviation. Ifstd
is a Tensor(data type supports float32, float64), it has per-element standard deviations. Default is 1.0name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor filled with random values sampled from a normal distribution with
mean
andstd
.
Examples
>>> import paddle >>> x = paddle.randn([3, 4]) >>> x.normal_() >>> >>> print(x) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.06132207, 1.11349595, 0.41906244, -0.24858207], [-1.85169315, -1.50370061, 1.73954511, 0.13331604], [ 1.66359663, -0.55764782, -0.59911072, -0.57773495]])
-
not_equal
(
y,
name=None
)
not_equal¶
-
Returns the truth value of \(x != y\) elementwise, which is equivalent function to the overloaded operator !=.
Note
The output has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float32, float64, uint8, int8, int16, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, uint8, int8, int16, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The output shape is same as input
x
. The output data type is bool. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3]) >>> y = paddle.to_tensor([1, 3, 2]) >>> result1 = paddle.not_equal(x, y) >>> print(result1) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True , True ])
-
not_equal_
(
y,
name=None
)
not_equal_¶
-
Inplace version of
not_equal
API, the output Tensor will be inplaced with inputx
. Please refer to not_equal.
-
numel
(
name=None
)
numel¶
-
Returns the number of elements for a tensor, which is a 0-D int64 Tensor with shape [].
- Parameters
-
x (Tensor) – The input Tensor, it’s data type can be bool, float16, float32, float64, int32, int64, complex64, complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The number of elements for the input Tensor, whose shape is [].
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32') >>> numel = paddle.numel(x) >>> print(numel.numpy()) 140
-
ormqr
(
tau,
y,
left=True,
transpose=False,
name=None
)
ormqr¶
-
Calculate the product of a normal matrix and a householder matrix. Compute the product of the matrix C (given by y) with dimensions (m, n) and a matrix Q, where Q is generated by the Householder reflection coefficient (x, tau). Returns a Tensor.
- Parameters
-
x (Tensor) – Shape(*,mn, k), when left is True, the value of mn is equal to m, otherwise the value of mn is equal to n. * indicates that the length of the tensor on axis 0 is 0 or greater.
tau (Tensor) – Shape (*, min(mn, k)), where * indicates that the length of the Tensor on axis 0 is 0 or greater, and its type is the same as input.
y (Tensor) – Shape (*m,n), where * indicates that the length of the Tensor on axis 0 is 0 or greater, and its type is the same as input.
left (bool, optional) – Determines the order in which the matrix product operations are operated. If left is true, the order of evaluation is op(Q) * y, otherwise, the order of evaluation is y * op(Q). Default value: True.
transpose (bool, optional) – If true, the matrix Q is conjugated and transposed, otherwise, the conjugate transpose transformation is not performed. Default value: False.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor. Data type and dimension are equals with
y
.
Examples
>>> import paddle >>> import numpy as np >>> from paddle import linalg >>> input = paddle.to_tensor([[-114.6, 10.9, 1.1], [-0.304, 38.07, 69.38], [-0.45, -0.17, 62]]) >>> tau = paddle.to_tensor([1.55, 1.94, 3.0]) >>> y = paddle.to_tensor([[-114.6, 10.9, 1.1], [-0.304, 38.07, 69.38], [-0.45, -0.17, 62]]) >>> output = linalg.ormqr(input, tau, y) >>> print(output) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 63.82712936 , -13.82312393 , -116.28614044], [-53.65926361 , -28.15783691 , -70.42700958 ], [-79.54292297 , 24.00182915 , -41.34253311 ]])
-
outer
(
y,
name=None
)
outer¶
-
Outer product of two Tensors.
Input is flattened if not already 1-dimensional.
- Parameters
-
x (Tensor) – An N-D Tensor or a Scalar Tensor.
y (Tensor) – An N-D Tensor or a Scalar Tensor.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The outer-product Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.arange(1, 4).astype('float32') >>> y = paddle.arange(1, 6).astype('float32') >>> out = paddle.outer(x, y) >>> print(out) Tensor(shape=[3, 5], dtype=float32, place=Place(cpu), stop_gradient=True, [[1. , 2. , 3. , 4. , 5. ], [2. , 4. , 6. , 8. , 10.], [3. , 6. , 9. , 12., 15.]])
-
pca_lowrank
(
q=None,
center=True,
niter=2,
name=None
)
pca_lowrank¶
-
Performs linear Principal Component Analysis (PCA) on a low-rank matrix or batches of such matrices.
Let \(X\) be the input matrix or a batch of input matrices, the output should satisfies:
\[X = U * diag(S) * V^{T}\]- Parameters
-
x (Tensor) – The input tensor. Its shape should be […, N, M], where … is zero or more batch dimensions. N and M can be arbitrary positive number. The data type of x should be float32 or float64.
q (int, optional) – a slightly overestimated rank of \(X\). Default value is \(q=min(6,N,M)\).
center (bool, optional) – if True, center the input tensor. Default value is True.
niter (int, optional) – number of iterations to perform. Default: 2.
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
Tensor U, is N x q matrix.
Tensor S, is a vector with length q.
Tensor V, is M x q matrix.
tuple (U, S, V): which is the nearly optimal approximation of a singular value decomposition of a centered matrix \(X\).
Examples
>>> import paddle >>> paddle.seed(2023) >>> x = paddle.randn((5, 5), dtype='float64') >>> U, S, V = paddle.linalg.pca_lowrank(x) >>> print(U) Tensor(shape=[5, 5], dtype=float64, place=Place(cpu), stop_gradient=True, [[ 0.80131563, 0.11962647, 0.27667179, -0.25891214, 0.44721360], [-0.12642301, 0.69917551, -0.17899393, 0.51296394, 0.44721360], [ 0.08997135, -0.69821706, -0.20059228, 0.51396579, 0.44721360], [-0.23871837, -0.02815453, -0.59888153, -0.61932365, 0.44721360], [-0.52614559, -0.09243040, 0.70179595, -0.14869394, 0.44721360]]) >>> print(S) Tensor(shape=[5], dtype=float64, place=Place(cpu), stop_gradient=True, [2.60101614, 2.40554940, 1.49768346, 0.19064830, 0.00000000]) >>> print(V) Tensor(shape=[5, 5], dtype=float64, place=Place(cpu), stop_gradient=True, [[ 0.58339481, -0.17143771, 0.00522143, 0.57976310, 0.54231640], [ 0.22334335, 0.72963474, -0.30148399, -0.39388750, 0.41438019], [ 0.05416913, 0.34666487, 0.93549758, 0.00063507, 0.04162998], [-0.39519094, 0.53074980, -0.16687419, 0.71175586, -0.16638919], [-0.67131070, -0.19071018, 0.07795789, -0.04615811, 0.71046714]])
-
pinv
(
rcond=1e-15,
hermitian=False,
name=None
)
pinv¶
-
Calculate pseudo inverse via SVD(singular value decomposition) of one matrix or batches of regular matrix.
\[if hermitian == False: x = u * s * vt (SVD) out = v * 1/s * ut else: x = u * s * ut (eigh) out = u * 1/s * u.conj().transpose(-2,-1)\]If x is hermitian or symmetric matrix, svd will be replaced with eigh.
- Parameters
-
x (Tensor) – The input tensor. Its shape should be (*, m, n) where * is zero or more batch dimensions. m and n can be arbitrary positive number. The data type of x should be float32 or float64 or complex64 or complex128. When data type is complex64 or complex128, hermitian should be set True.
rcond (Tensor, optional) – the tolerance value to determine when is a singular value zero. Default:1e-15.
hermitian (bool, optional) – indicates whether x is Hermitian if complex or symmetric if real. Default: False.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor with same data type with x. it represents pseudo inverse of x. Its shape should be (*, n, m).
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.arange(15).reshape((3, 5)).astype('float64') >>> input = paddle.to_tensor(x) >>> out = paddle.linalg.pinv(input) >>> print(input) Tensor(shape=[3, 5], dtype=float64, place=Place(cpu), stop_gradient=True, [[0. , 1. , 2. , 3. , 4. ], [5. , 6. , 7. , 8. , 9. ], [10., 11., 12., 13., 14.]]) >>> print(out) Tensor(shape=[5, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[-0.22666667, -0.06666667, 0.09333333], [-0.12333333, -0.03333333, 0.05666667], [-0.02000000, -0.00000000, 0.02000000], [ 0.08333333, 0.03333333, -0.01666667], [ 0.18666667, 0.06666667, -0.05333333]]) # one can verify : x * out * x = x ; # or out * x * out = x ;
-
place
(
)
place¶
-
Variable don’t have ‘place’ interface in static graph mode But this interface can greatly facilitate dy2static. So we give a warning here and return None.
-
polar
(
angle,
name=None
)
polar¶
-
Return a Cartesian coordinates corresponding to the polar coordinates complex tensor given the
abs
andangle
component.- Parameters
-
abs (Tensor) – The abs component. The data type should be ‘float32’ or ‘float64’.
angle (Tensor) – The angle component. The data type should be the same as
abs
.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
The output tensor. The data type is ‘complex64’ or ‘complex128’, with the same precision as
abs
andangle
. - Return type
-
Tensor
Note
paddle.polar
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .Examples
>>> import paddle >>> import numpy as np >>> abs = paddle.to_tensor([1, 2], dtype=paddle.float64) >>> angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64) >>> out = paddle.polar(abs, angle) >>> print(out) Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True, [ (6.123233995736766e-17+1j) , (-1.4142135623730954-1.414213562373095j)])
-
polygamma
(
n,
name=None
)
polygamma¶
-
Calculates the polygamma of the given input tensor, element-wise.
The equation is:
\[\Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]\]- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: float32, float64.
n (int) – Order of the derivative. Must be integral.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.
Examples
>>> import paddle >>> data = paddle.to_tensor([2, 3, 25.5], dtype='float32') >>> res = paddle.polygamma(data, 1) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [0.64493412, 0.39493406, 0.03999467])
-
polygamma_
(
n,
name=None
)
polygamma_¶
-
Inplace version of
polygamma
API, the output Tensor will be inplaced with inputx
. Please refer to polygamma.
-
pop
(
*args
)
pop¶
-
The type variable must be LoD Tensor Array. When self is LoDTensorArray, calling pop is similar to Python’s pop on list. This interface is used to simplify dygraph to static graph operations.
- Parameters
-
self (Variable) – The source variable, which must be LOD_TENSOR_ARRAY
*args – optional, a int means index.
- Returns
-
self[index]
- Return type
-
Variable
-
pow
(
y,
name=None
)
pow¶
-
Compute the power of Tensor elements. The equation is:
\[out = x^{y}\]Note
paddle.pow
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
y (float|int|Tensor) – If it is an N-D Tensor, its data type should be the same as x.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as x.
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 2, 3], dtype='float32') >>> # example 1: y is a float or int >>> res = paddle.pow(x, 2) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 4., 9.]) >>> res = paddle.pow(x, 2.5) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1. , 5.65685415 , 15.58845711]) >>> # example 2: y is a Tensor >>> y = paddle.to_tensor([2], dtype='float32') >>> res = paddle.pow(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 4., 9.])
-
pow_
(
y,
name=None
)
pow_¶
-
Inplace version of
pow
API, the output Tensor will be inplaced with inputx
. Please refer to pow.
-
prod
(
axis=None,
keepdim=False,
dtype=None,
name=None
)
prod¶
-
Compute the product of tensor elements over the given axis.
- Parameters
-
x (Tensor) – The input tensor, its data type should be float32, float64, int32, int64.
axis (int|list|tuple, optional) – The axis along which the product is computed. If
None
, multiply all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim, x.ndim)\). If \(axis[i]<0\), the axis to reduce is \(x.ndim + axis[i]\). Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keepdim is true. Default is False.
dtype (str|np.dtype, optional) – The desired date type of returned tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before operator performed. This is very useful for avoiding data type overflows. The default value is None, the dtype of output is the same as input Tensor x.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, result of product on the specified dim of input tensor.
Examples
>>> import paddle >>> # the axis is a int element >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], ... [0.1, 0.2, 0.6, 0.7]]) >>> out1 = paddle.prod(x) >>> out1 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.00022680) >>> out2 = paddle.prod(x, -1) >>> out2 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [0.02700000, 0.00840000]) >>> out3 = paddle.prod(x, 0) >>> out3 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.02000000, 0.06000000, 0.30000001, 0.63000000]) >>> out4 = paddle.prod(x, 0, keepdim=True) >>> out4 Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.02000000, 0.06000000, 0.30000001, 0.63000000]]) >>> out5 = paddle.prod(x, 0, dtype='int64') >>> out5 Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 0, 0, 0]) >>> # the axis is list >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]], ... [[5.0, 6.0], [7.0, 8.0]]]) >>> out6 = paddle.prod(y, [0, 1]) >>> out6 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [105., 384.]) >>> out7 = paddle.prod(y, (1, 2)) >>> out7 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [24. , 1680.])
-
put_along_axis
(
indices,
values,
axis,
reduce='assign',
include_self=True,
broadcast=True
)
put_along_axis¶
-
Put values into the destination array by given indices matrix along the designated axis.
- Parameters
-
arr (Tensor) – The Destination Tensor. Supported data types are float32 and float64.
indices (Tensor) – Indices to put along each 1d slice of arr. This must match the dimension of arr, and need to broadcast against arr if broadcast is ‘True’. Supported data type are int and int64.
values (Tensor) – The value element(s) to put. The data types should be same as arr.
axis (int) – The axis to put 1d slices along.
reduce (str, optional) – The reduce operation, default is ‘assign’, support ‘add’, ‘assign’, ‘mul’, ‘multiply’, ‘mean’, ‘amin’ and ‘amax’.
include_self (bool, optional) – whether to reduce with the elements of arr, default is ‘True’.
broadcast (bool, optional) – whether to broadcast indices, default is ‘True’.
- Returns
-
Tensor, The indexed element, same dtype with arr
Examples
>>> import paddle >>> x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]]) >>> index = paddle.to_tensor([[0]]) >>> value = 99 >>> axis = 0 >>> result = paddle.put_along_axis(x, index, value, axis) >>> print(result) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[99, 99, 99], [60, 40, 50]]) >>> index = paddle.zeros((2,2)).astype("int32") >>> value=paddle.to_tensor([[1,2],[3,4]]).astype(x.dtype) >>> result = paddle.put_along_axis(x, index, value, 0, "add", True, False) >>> print(result) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[14, 36, 20], [60, 40, 50]]) >>> result = paddle.put_along_axis(x, index, value, 0, "mul", True, False) >>> print(result) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[30 , 240, 20 ], [60 , 40 , 50 ]]) >>> result = paddle.put_along_axis(x, index, value, 0, "mean", True, False) >>> print(result) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[4 , 12, 20], [60, 40, 50]]) >>> result = paddle.put_along_axis(x, index, value, 0, "amin", True, False) >>> print(result) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 20], [60, 40, 50]]) >>> result = paddle.put_along_axis(x, index, value, 0, "amax", True, False) >>> print(result) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[10, 30, 20], [60, 40, 50]]) >>> result = paddle.put_along_axis(x, index, value, 0, "add", False, False) >>> print(result) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[4 , 6 , 20], [60, 40, 50]])
-
put_along_axis_
(
indices,
values,
axis,
reduce='assign',
include_self=True
)
put_along_axis_¶
-
Inplace version of
put_along_axis
API, the output Tensor will be inplaced with inputarr
. Please refer to put_along_axis.
-
qr
(
mode='reduced',
name=None
)
qr¶
-
Computes the QR decomposition of one matrix or batches of matrices (backward is unsupported now).
- Parameters
-
x (Tensor) – The input tensor. Its shape should be […, M, N], where … is zero or more batch dimensions. M and N can be arbitrary positive number. The data type of x should be float32 or float64.
mode (str, optional) – A flag to control the behavior of qr. Suppose x’s shape is […, M, N] and denoting K = min(M, N): If mode = “reduced”, qr op will return reduced Q and R matrices, which means Q’s shape is […, M, K] and R’s shape is […, K, N]. If mode = “complete”, qr op will return complete Q and R matrices, which means Q’s shape is […, M, M] and R’s shape is […, M, N]. If mode = “r”, qr op will only return reduced R matrix, which means R’s shape is […, K, N]. Default: “reduced”.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
If mode = “reduced” or mode = “complete”, qr will return a two tensor-tuple, which represents Q and R. If mode = “r”, qr will return a tensor which represents R.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64') >>> q, r = paddle.linalg.qr(x) >>> print (q) Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[-0.16903085, 0.89708523], [-0.50709255, 0.27602622], [-0.84515425, -0.34503278]]) >>> print (r) Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[-5.91607978, -7.43735744], [ 0. , 0.82807867]]) >>> # one can verify : X = Q * R ;
-
quantile
(
q,
axis=None,
keepdim=False,
interpolation='linear'
)
quantile¶
-
Compute the quantile of the input along the specified axis. If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN.
- Parameters
-
x (Tensor) – The input Tensor, it’s data type can be float32, float64, int32, int64.
q (int|float|list|Tensor) – The q for calculate quantile, which should be in range [0, 1]. If q is a list or a 1-D Tensor, each element of q will be calculated and the first dimension of output is same to the number of
q
. If q is a 0-D Tensor, it will be treated as an integer or float.axis (int|list, optional) – The axis along which to calculate quantile.
axis
should be int or list of int.axis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
is less than 0, it works the same way as \(axis + D\). Ifaxis
is a list, quantile is calculated over all elements of given axises. Ifaxis
is None, quantile is calculated over all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.interpolation (str, optional) – The interpolation method to use when the desired quantile falls between two data points. Must be one of linear, higher, lower, midpoint and nearest. Default is linear.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of quantile along
axis
ofx
.
Examples
>>> import paddle >>> y = paddle.arange(0, 8 ,dtype="float32").reshape([4, 2]) >>> print(y) Tensor(shape=[4, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1.], [2., 3.], [4., 5.], [6., 7.]]) >>> y1 = paddle.quantile(y, q=0.5, axis=[0, 1]) >>> print(y1) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 3.50000000) >>> y2 = paddle.quantile(y, q=0.5, axis=1) >>> print(y2) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.50000000, 2.50000000, 4.50000000, 6.50000000]) >>> y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0) >>> print(y3) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.80000000, 2.80000000], [3. , 4. ]]) >>> y[0,0] = float("nan") >>> y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True) >>> print(y4) Tensor(shape=[4, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[nan ], [2.80000000], [4.80000000], [6.80000000]])
-
rad2deg
(
name=None
)
rad2deg¶
-
Convert each of the elements of input x from angles in radians to degrees.
- Equation:
-
\[rad2deg(x)=180/ \pi * x\]
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> import math >>> x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570]) >>> result1 = paddle.rad2deg(x1) >>> result1 Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True, [ 180.02334595, -180.02334595, 359.98937988, -359.98937988, 89.95437622 , -89.95437622 ]) >>> x2 = paddle.to_tensor(math.pi/2) >>> result2 = paddle.rad2deg(x2) >>> result2 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 90.) >>> x3 = paddle.to_tensor(1) >>> result3 = paddle.rad2deg(x3) >>> result3 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 57.29578018)
-
rank
(
)
rank¶
-
Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
- Parameters
-
input (Tensor) – The input Tensor with shape of \([N_1, N_2, ..., N_k]\), the data type is arbitrary.
- Returns
-
The 0-D tensor with the dimensions of the input Tensor.
- Return type
-
Tensor, the output data type is int32.
Examples
>>> import paddle >>> input = paddle.rand((3, 100, 100)) >>> rank = paddle.rank(input) >>> print(rank.numpy()) 3
-
real
(
name=None
)
real¶
-
Returns a new Tensor containing real values of the input Tensor.
- Parameters
-
x (Tensor) – the input Tensor, its data type could be complex64 or complex128.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
a Tensor containing real values of the input Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor( ... [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]]) >>> print(x) Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True, [[(1+6j), (2+5j), (3+4j)], [(4+3j), (5+2j), (6+1j)]]) >>> real_res = paddle.real(x) >>> print(real_res) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 2., 3.], [4., 5., 6.]]) >>> real_t = x.real() >>> print(real_t) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 2., 3.], [4., 5., 6.]])
-
reciprocal
(
name=None
)
reciprocal¶
-
Reciprocal Activation Operator.
\[out = \frac{1}{x}\]- Parameters
-
x (Tensor) – Input of Reciprocal operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Reciprocal operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.reciprocal(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-2.50000000, -5. , 10. , 3.33333325])
-
reciprocal_
(
name=None
)
reciprocal_¶
-
Inplace version of
reciprocal
API, the output Tensor will be inplaced with inputx
. Please refer to reciprocal.
-
reduce_as
(
target,
name=None
)
reduce_as¶
-
Computes the sum of tensor elements make the shape of its result equal to the shape of target.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is bool, float16, float32, float64, int8, uint8, int16, uint16, int32, int64, complex64 or complex128.
target (Tensor) – An N-D Tensor, the length of x shape must greater than or equal to the length of target shape. The data type is bool, float16, float32, float64, int8, uint8, int16, uint16, int32, int64, complex64 or complex128.
- Returns
-
The sum of the input tensor x along some axis has the same shape as the shape of the input tensor target, if x.dtype=’bool’, x.dtype=’int32’, it’s data type is ‘int64’, otherwise it’s data type is the same as x.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) >>> x Tensor(shape=[2, 4], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[1, 2, 3, 4], [5, 6, 7, 8]]) >>> target = paddle.to_tensor([1, 2, 3, 4]) >>> target Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True, [1, 2, 3, 4]) >>> res = paddle.reduce_as(x, target) >>> res Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True, [6 , 8 , 10, 12])
-
remainder
(
y,
name=None
)
remainder¶
-
Mod two tensors element-wise. The equation is:
\[out = x \% y\]Note
paddle.remainder
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .And mod, floor_mod are all functions with the same name
- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([2, 3, 8, 7]) >>> y = paddle.to_tensor([1, 5, 3, 3]) >>> z = paddle.remainder(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1]) >>> z = paddle.floor_mod(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1]) >>> z = paddle.mod(x, y) >>> print(z) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 3, 2, 1])
-
remainder_
(
y,
name=None
)
remainder_¶
-
Inplace version of
floor_mod_
API, the output Tensor will be inplaced with inputx
. Please refer to floor_mod_.
-
renorm
(
p,
axis,
max_norm
)
renorm¶
-
renorm
This operator is used to calculate the p-norm along the axis, suppose the input-shape on axis dimension has the value of T, then the tensor is split into T parts, the p-norm should be calculated for each part, if the p-norm for part i is larger than max-norm, then each element in part i should be re-normalized at the same scale so that part-i’ p-norm equals max-norm exactly, otherwise part-i stays unchanged.
- Parameters
-
x (Tensor) – The input Tensor
p (float) – The power of the norm operation.
axis (int) – the dimension to slice the tensor.
max-norm (float) – the maximal norm limit.
- Returns
-
the renorm Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> input = [[[2.0, 2, -2], [3, 0.3, 3]], ... [[2, -8, 2], [3.1, 3.7, 3]]] >>> x = paddle.to_tensor(input,dtype='float32') >>> y = paddle.renorm(x, 1.0, 2, 2.05) >>> print(y) Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[[ 0.40594056, 0.29285714, -0.41000000], [ 0.60891086, 0.04392857, 0.61500001]], [[ 0.40594056, -1.17142856, 0.41000000], [ 0.62920785, 0.54178572, 0.61500001]]])
-
renorm_
(
p,
axis,
max_norm
)
renorm_¶
-
Inplace version of
renorm
API, the output Tensor will be inplaced with inputx
. Please refer to renorm.
-
repeat_interleave
(
repeats,
axis=None,
name=None
)
repeat_interleave¶
-
Returns a new tensor which repeats the
x
tensor along dimensionaxis
using the entries inrepeats
which is a int or a Tensor.- Parameters
-
x (Tensor) – The input Tensor to be operated. The data of
x
can be one of float32, float64, int32, int64.repeats (Tensor or int) – The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
axis (int, optional) – The dimension in which we manipulate. Default: None, the output tensor is flatten.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Tensor, A Tensor with same data type as
x
.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) >>> repeats = paddle.to_tensor([3, 2, 1], dtype='int32') >>> out = paddle.repeat_interleave(x, repeats, 1) >>> print(out) Tensor(shape=[2, 6], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 1, 1, 2, 2, 3], [4, 4, 4, 5, 5, 6]]) >>> out = paddle.repeat_interleave(x, 2, 0) >>> print(out) Tensor(shape=[4, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]) >>> out = paddle.repeat_interleave(x, 2, None) >>> print(out) Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6])
-
reshape
(
shape,
name=None
)
reshape¶
-
Changes the shape of
x
without changing its data.Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode. If you want to use the Tensor copy version, please use Tensor.clone likereshape_clone_x = x.reshape([-1]).clone()
.Some tricks exist when specifying the target shape.
-
-1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
-
0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
Here are some examples to explain it.
-
Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x’s data unchanged.
-
Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x’s data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
-
Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x’s data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
The following figure illustrates the first example – a 3D tensor of shape [2, 4, 6] is transformed into a 2D tensor of shape [6, 8], during which the order and values of the elements in the tensor remain unchanged. The elements in the two subdiagrams correspond to each other, clearly demonstrating how the reshape API works.
- Parameters
-
x (Tensor) – An N-D Tensor. The data type is
float16
,float32
,float64
,int16
,int32
,int64
,int8
,uint8
,complex64
,complex128
,bfloat16
orbool
.shape (list|tuple|Tensor) – Define the target shape. At most one dimension of the target shape can be -1. The data type is
int32
. Ifshape
is a list or tuple, each element of it should be integer or Tensor with shape []. Ifshape
is a Tensor, it should be an 1-D Tensor .name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A reshaped Tensor with the same data type as
x
.
Examples
>>> import paddle >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> positive_four = paddle.full([1], 4, "int32") >>> out = paddle.reshape(x, [-1, 0, 3, 2]) >>> print(out.shape) [2, 4, 3, 2] >>> out = paddle.reshape(x, shape=[positive_four, 12]) >>> print(out.shape) [4, 12] >>> shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32) >>> out = paddle.reshape(x, shape=shape_tensor) >>> print(out.shape) [8, 6] >>> # out shares data with x in dygraph mode >>> x[0, 0, 0] = 10. >>> print(out[0, 0]) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 10.)
-
-
reshape_
(
shape,
name=None
)
reshape_¶
-
Inplace version of
reshape
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_tensor_reshape.
-
reverse
(
axis,
name=None
)
reverse¶
-
Reverse the order of a n-D tensor along given axis in axis.
- Parameters
-
x (Tensor) – A Tensor(or LoDTensor) with shape \([N_1, N_2,..., N_k]\) . The data type of the input Tensor x should be float32, float64, int32, int64, bool.
axis (list|tuple|int) – The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
Examples
>>> import paddle >>> image_shape=(3, 2, 2) >>> img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape) >>> tmp = paddle.flip(img, [0,1]) >>> print(tmp) Tensor(shape=[3, 2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[[10, 11], [8 , 9 ]], [[6 , 7 ], [4 , 5 ]], [[2 , 3 ], [0 , 1 ]]]) >>> out = paddle.flip(tmp,-1) >>> print(out) Tensor(shape=[3, 2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[[11, 10], [9 , 8 ]], [[7 , 6 ], [5 , 4 ]], [[3 , 2 ], [1 , 0 ]]])
-
roll
(
shifts,
axis=None,
name=None
)
roll¶
-
Roll the x tensor along the given axis(axes). With specific ‘shifts’, Elements that roll beyond the last position are re-introduced at the first according to ‘shifts’. If a axis is not specified, the tensor will be flattened before rolling and then restored to the original shape.
- Parameters
-
x (Tensor) – The x tensor as input.
shifts (int|list|tuple) – The number of places by which the elements of the x tensor are shifted.
axis (int|list|tuple, optional) – axis(axes) along which to roll. Default: None
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Tensor, A Tensor with same data type as x.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0, 3.0], ... [4.0, 5.0, 6.0], ... [7.0, 8.0, 9.0]]) >>> out_z1 = paddle.roll(x, shifts=1) >>> print(out_z1.numpy()) [[9. 1. 2.] [3. 4. 5.] [6. 7. 8.]] >>> out_z2 = paddle.roll(x, shifts=1, axis=0) >>> print(out_z2.numpy()) [[7. 8. 9.] [1. 2. 3.] [4. 5. 6.]] >>> out_z3 = paddle.roll(x, shifts=1, axis=1) >>> print(out_z3.numpy()) [[3. 1. 2.] [6. 4. 5.] [9. 7. 8.]]
-
rot90
(
k=1,
axes=[0, 1],
name=None
)
rot90¶
-
Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
- Parameters
-
x (Tensor) – The input Tensor(or LoDTensor). The data type of the input Tensor x should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
k (int, optional) – Direction and number of times to rotate, default value: 1.
axes (list|tuple, optional) – Axes to rotate, dimension must be 2. default value: [0, 1].
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Examples
>>> import paddle >>> data = paddle.arange(4) >>> data = paddle.reshape(data, (2, 2)) >>> print(data.numpy()) [[0 1] [2 3]] >>> y = paddle.rot90(data, 1, [0, 1]) >>> print(y.numpy()) [[1 3] [0 2]] >>> y= paddle.rot90(data, -1, [0, 1]) >>> print(y.numpy()) [[2 0] [3 1]] >>> data2 = paddle.arange(8) >>> data2 = paddle.reshape(data2, (2,2,2)) >>> print(data2.numpy()) [[[0 1] [2 3]] [[4 5] [6 7]]] >>> y = paddle.rot90(data2, 1, [1, 2]) >>> print(y.numpy()) [[[1 3] [0 2]] [[5 7] [4 6]]]
-
round
(
name=None
)
round¶
-
Round the values in the input to the nearest integer value.
input: x.shape = [4] x.data = [1.2, -0.9, 3.4, 0.9] output: out.shape = [4] out.data = [1., -1., 3., 1.]
- Parameters
-
x (Tensor) – Input of Round operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Round operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.5, -0.2, 0.6, 1.5]) >>> out = paddle.round(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-1., -0., 1., 2.])
-
round_
(
name=None
)
round_¶
-
Inplace version of
round
API, the output Tensor will be inplaced with inputx
. Please refer to round.
-
rsqrt
(
name=None
)
rsqrt¶
-
Rsqrt Activation Operator.
Please make sure input is legal in case of numeric errors.
\[out = \frac{1}{\sqrt{x}}\]- Parameters
-
x (Tensor) – Input of Rsqrt operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Rsqrt operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4]) >>> out = paddle.rsqrt(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [3.16227770, 2.23606801, 1.82574177, 1.58113885])
-
rsqrt_
(
name=None
)
rsqrt_¶
-
Inplace version of
rsqrt
API, the output Tensor will be inplaced with inputx
. Please refer to rsqrt.
-
scale
(
scale=1.0,
bias=0.0,
bias_after_scale=True,
act=None,
name=None
)
scale¶
-
Scale operator.
Putting scale and bias to the input Tensor as following:
bias_after_scale
is True:\[Out=scale*X+bias\]bias_after_scale
is False:\[Out=scale*(X+bias)\]- Parameters
-
x (Tensor) – Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
scale (float|Tensor) – The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
bias (float) – The bias to be put on the input.
bias_after_scale (bool) – Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
act (str, optional) – Activation applied to the output such as tanh, softmax, sigmoid, relu.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output Tensor of scale operator, with shape and data type same as input.
- Return type
-
Tensor
Examples
>>> # scale as a float32 number >>> import paddle >>> data = paddle.arange(6).astype("float32").reshape([2, 3]) >>> print(data) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 2.], [3., 4., 5.]]) >>> res = paddle.scale(data, scale=2.0, bias=1.0) >>> print(res) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1. , 3. , 5. ], [7. , 9. , 11.]])
>>> # scale with parameter scale as a Tensor >>> import paddle >>> data = paddle.arange(6).astype("float32").reshape([2, 3]) >>> print(data) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 2.], [3., 4., 5.]]) >>> factor = paddle.to_tensor([2], dtype='float32') >>> res = paddle.scale(data, scale=factor, bias=1.0) >>> print(res) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1. , 3. , 5. ], [7. , 9. , 11.]])
-
scale_
(
scale=1.0,
bias=0.0,
bias_after_scale=True,
act=None,
name=None
)
scale_¶
-
Inplace version of
scale
API, the output Tensor will be inplaced with inputx
. Please refer to scale.
-
scatter
(
index,
updates,
overwrite=True,
name=None
)
scatter¶
-
Scatter Layer Output is obtained by updating the input on selected indices based on updates.
>>> import paddle >>> #input: >>> x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32') >>> index = paddle.to_tensor([2, 1, 0, 1], dtype='int64') >>> # shape of updates should be the same as x >>> # shape of updates with dim > 1 should be the same as input >>> updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32') >>> overwrite = False >>> # calculation: >>> if not overwrite: ... for i in range(len(index)): ... x[index[i]] = paddle.zeros([2]) >>> for i in range(len(index)): ... if (overwrite): ... x[index[i]] = updates[i] ... else: ... x[index[i]] += updates[i] >>> # output: >>> out = paddle.to_tensor([[3, 3], [6, 6], [1, 1]]) >>> print(out.shape) [3, 2]
NOTICE: The order in which updates are applied is nondeterministic, so the output will be nondeterministic if index contains duplicates.
- Parameters
-
x (Tensor) – The input N-D Tensor with ndim>=1. Data type can be float32, float64.
index (Tensor) – The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates’s length, and the value in index cannot exceed input’s length.
updates (Tensor) – Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be equal with the (i+1)th dim of the input.
overwrite (bool, optional) – The mode that updating the output when there are same indices.If True, use the overwrite mode to update the output of the same index,if False, use the accumulate mode to update the output of the same index. Default value is True.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Tensor, The output is a Tensor with the same shape as x.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32') >>> index = paddle.to_tensor([2, 1, 0, 1], dtype='int64') >>> updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32') >>> output1 = paddle.scatter(x, index, updates, overwrite=False) >>> print(output1) Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[3., 3.], [6., 6.], [1., 1.]]) >>> output2 = paddle.scatter(x, index, updates, overwrite=True) >>> # CPU device: >>> # [[3., 3.], >>> # [4., 4.], >>> # [1., 1.]] >>> # GPU device maybe have two results because of the repeated numbers in index >>> # result 1: >>> # [[3., 3.], >>> # [4., 4.], >>> # [1., 1.]] >>> # result 2: >>> # [[3., 3.], >>> # [2., 2.], >>> # [1., 1.]]
-
scatter_
(
index,
updates,
overwrite=True,
name=None
)
scatter_¶
-
Inplace version of
scatter
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_tensor_scatter.
-
scatter_nd
(
updates,
shape,
name=None
)
scatter_nd¶
-
Scatter_nd Layer
Output is obtained by scattering the
updates
in a new tensor according toindex
. This op is similar toscatter_nd_add
, except the tensor ofshape
is zero-initialized. Correspondingly,scatter_nd(index, updates, shape)
is equal toscatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)
. Ifindex
has repeated elements, then the corresponding updates are accumulated. Because of the numerical approximation issues, the different order of repeated elements inindex
may cause different results. The specific calculation method can be seenscatter_nd_add
. This op is the inverse of thegather_nd
op.- Parameters
-
index (Tensor) – The index input with ndim >= 1 and index.shape[-1] <= len(shape). Its dtype should be int32 or int64 as it is used as indexes.
updates (Tensor) – The updated value of scatter_nd op. Its dtype should be float32, float64. It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
shape (tuple|list) – Shape of output tensor.
name (str|None) – The output Tensor name. If set None, the layer will be named automatically.
- Returns
-
output (Tensor), The output is a tensor with the same type as
updates
.
Examples
>>> import paddle >>> index = paddle.to_tensor([[1, 1], ... [0, 1], ... [1, 3]], dtype="int64") >>> updates = paddle.rand(shape=[3, 9, 10], dtype='float32') >>> shape = [3, 5, 9, 10] >>> output = paddle.scatter_nd(index, updates, shape)
-
scatter_nd_add
(
index,
updates,
name=None
)
scatter_nd_add¶
-
Output is obtained by applying sparse addition to a single value or slice in a Tensor.
x
is a Tensor with ndim \(R\) andindex
is a Tensor with ndim \(K\) . Thus,index
has shape \([i_0, i_1, ..., i_{K-2}, Q]\) where \(Q \leq R\) .updates
is a Tensor with ndim \(K - 1 + R - Q\) and its shape is \(index.shape[:-1] + x.shape[index.shape[-1]:]\) .According to the \([i_0, i_1, ..., i_{K-2}]\) of
index
, add the correspondingupdates
slice to thex
slice which is obtained by the last one dimension ofindex
.Given: * Case 1: x = [0, 1, 2, 3, 4, 5] index = [[1], [2], [3], [1]] updates = [9, 10, 11, 12] we get: output = [0, 22, 12, 14, 4, 5] * Case 2: x = [[65, 17], [-14, -25]] index = [[], []] updates = [[[-1, -2], [1, 2]], [[3, 4], [-3, -4]]] x.shape = (2, 2) index.shape = (2, 0) updates.shape = (2, 2, 2) we get: output = [[67, 19], [-16, -27]]
- Parameters
-
x (Tensor) – The x input. Its dtype should be int32, int64, float32, float64.
index (Tensor) – The index input with ndim > 1 and index.shape[-1] <= x.ndim. Its dtype should be int32 or int64 as it is used as indexes.
updates (Tensor) – The updated value of scatter_nd_add op, and it must have the same dtype as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
name (str|None) – The output tensor name. If set None, the layer will be named automatically.
- Returns
-
output (Tensor), The output is a tensor with the same shape and dtype as x.
Examples
>>> import paddle >>> x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32') >>> updates = paddle.rand(shape=[3, 9, 10], dtype='float32') >>> index = paddle.to_tensor([[1, 1], ... [0, 1], ... [1, 3]], dtype='int64') >>> output = paddle.scatter_nd_add(x, index, updates) >>> print(output.shape) [3, 5, 9, 10]
-
select_scatter
(
values,
axis,
index,
name=None
)
select_scatter¶
-
Embeds the values of the values tensor into x at the given index of axis.
- Parameters
-
x (Tensor) – The Destination Tensor. Supported data types are bool, float16, float32, float64, uint8, int8, int16, int32, int64, bfloat16, complex64, complex128.
values (Tensor) – The tensor to embed into x. Supported data types are bool, float16, float32, float64, uint8, int8, int16, int32, int64, bfloat16, complex64, complex128.
axis (int) – the dimension to insert the slice into.
index (int) – the index to select with.
name (str, optional) – Name for the operation (optional, default is None).
- Returns
-
Tensor, same dtype and shape with x
Examples
>>> import paddle >>> x = paddle.zeros((2,3,4)).astype("float32") >>> values = paddle.ones((2,4)).astype("float32") >>> res = paddle.select_scatter(x,values,1,1) >>> print(res) Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[[0., 0., 0., 0.], [1., 1., 1., 1.], [0., 0., 0., 0.]], [[0., 0., 0., 0.], [1., 1., 1., 1.], [0., 0., 0., 0.]]])
-
sgn
(
name=None
)
sgn¶
-
For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding elements of input and absolute values of one. For other float dtype tensor, this API returns sign of every element in x: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.
- Parameters
-
x (Tensor) – The input tensor, which data type should be float16, float32, float64, complex64, complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]]) >>> paddle.sgn(x) Tensor(shape=[2, 4], dtype=complex64, place=Place(cpu), stop_gradient=True, [[ (0.6000000238418579+0.800000011920929j), (0.2800000011920929-0.9599999785423279j), 0j , (0.4472135901451111+0.8944271802902222j)], [ (0.6000000238418579+0.800000011920929j), (1+0j) , 0j , (-1+0j) ]])
-
shard_index
(
index_num,
nshards,
shard_id,
ignore_value=- 1
)
shard_index¶
-
Reset the values of input according to the shard it belongs to. Every value in input must be a non-negative integer, and the parameter index_num represents the integer above the maximum value of input. Thus, all values in input must be in the range [0, index_num) and each value can be regarded as the offset to the beginning of the range. The range is further split into multiple shards. Specifically, we first compute the shard_size according to the following formula, which represents the number of integers each shard can hold. So for the i’th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
shard_size = (index_num + nshards - 1) // nshards
For each value v in input, we reset it to a new value according to the following formula:
v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value
That is, the value v is set to the new offset within the range represented by the shard shard_id if it in the range. Otherwise, we reset it to be ignore_value.
- Parameters
-
input (Tensor) – Input tensor with data type int64 or int32. It’s last dimension must be 1.
index_num (int) – An integer represents the integer above the maximum value of input.
nshards (int) – The number of shards.
shard_id (int) – The index of the current shard.
ignore_value (int, optional) – An integer value out of sharded index range. The default value is -1.
- Returns
-
Tensor.
Examples
>>> import paddle >>> label = paddle.to_tensor([[16], [1]], "int64") >>> shard_label = paddle.shard_index(input=label, ... index_num=20, ... nshards=2, ... shard_id=0) >>> print(shard_label.numpy()) [[-1] [ 1]]
-
sigmoid
(
name=None
)
sigmoid¶
-
Sigmoid Activation.
\[out = \frac{1}{1 + e^{-x}}\]- Parameters
-
x (Tensor) – Input of Sigmoid operator, an N-D Tensor, with data type float16, float32, float64, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Sigmoid operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> import paddle.nn.functional as F >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = F.sigmoid(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.40131235, 0.45016602, 0.52497917, 0.57444251])
-
sigmoid_
(
name=None
)
sigmoid_¶
-
Inplace version of
sigmoid
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_sigmoid.
-
sign
(
name=None
)
sign¶
-
Returns sign of every element in x: 1 for positive, -1 for negative and 0 for zero.
- Parameters
-
x (Tensor) – The input tensor. The data type can be uint8, int8, int16, int32, int64, float16, float32 or float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output sign tensor with identical shape and data type to the input
x
. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32') >>> out = paddle.sign(x=x) >>> out Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 1., 0., -1., 1.])
-
signbit
(
name=None
)
signbit¶
-
Tests if each element of input has its sign bit set or not.
- Parameters
-
x (Tensor) – The input Tensor. Must be one of the following types: float16, float32, float64, bfloat16, uint8, int8, int16, int32, int64.
name (str, optional) – Name for the operation (optional, default is None).For more information, please refer to Name.
- Returns
-
The output Tensor. The sign bit of the corresponding element of the input tensor, True means negative, False means positive.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> x = paddle.to_tensor([-0., 1.1, -2.1, 0., 2.5], dtype='float32') >>> res = paddle.signbit(x) >>> print(res) Tensor(shape=[5], dtype=bool, place=Place(cpu), stop_gradient=True, [True, False, True, False, False])
>>> import paddle >>> paddle.set_device('cpu') >>> x = paddle.to_tensor([-5, -2, 3], dtype='int32') >>> res = paddle.signbit(x) >>> print(res) Tensor(shape=[3], dtype=bool, place=Place(cpu), stop_gradient=True, [True , True , False])
-
sin
(
name=None
)
sin¶
-
Sine Activation Operator.
\[out = sin(x)\]- Parameters
-
x (Tensor) – Input of Sin operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Sin operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.sin(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.38941833, -0.19866933, 0.09983342, 0.29552022])
-
sin_
(
name=None
)
sin_¶
-
Inplace version of
sin
API, the output Tensor will be inplaced with inputx
. Please refer to sin.
-
sinc
(
name=None
)
sinc¶
-
Calculate the normalized sinc of
x
elementwise.\[\begin{split}out_i = \left\{ \begin{aligned} &1 & \text{ if $x_i = 0$} \\ &\frac{\sin(\pi x_i)}{\pi x_i} & \text{ otherwise} \end{aligned} \right.\end{split}\]- Parameters
-
x (Tensor) – The input Tensor. Must be one of the following types: bfloat16, float16, float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), The Tensor of elementwise-computed normalized sinc result.
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> paddle.seed(100) >>> x = paddle.rand([2,3], dtype='float32') >>> res = paddle.sinc(x) >>> print(res) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.56691176, 0.93089867, 0.99977750], [0.61639023, 0.79618412, 0.89171958]])
-
sinc_
(
name=None
)
sinc_¶
-
Inplace version of
sinc
API, the output Tensor will be inplaced with inputx
. Please refer to sinc.
-
sinh
(
name=None
)
sinh¶
-
Sinh Activation Operator.
\[out = sinh(x)\]- Parameters
-
x (Tensor) – Input of Sinh operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Sinh operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.sinh(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.41075233, -0.20133601, 0.10016675, 0.30452031])
-
sinh_
(
name=None
)
sinh_¶
-
Inplace version of
sinh
API, the output Tensor will be inplaced with inputx
. Please refer to sinh.
-
slice
(
axes,
starts,
ends
)
slice¶
-
This operator produces a slice of
input
along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice usesaxes
,starts
andends
attributes to specify the start and end dimension for each axis in the list of axes and Slice uses this information to slice the input data tensor. If a negative value is passed tostarts
orends
such as \(-i\), it represents the reverse position of the axis \(i-1\) (here 0 is the initial position). If the value passed tostarts
orends
is greater than n (the number of elements in this dimension), it represents n. For slicing to the end of a dimension with unknown size, it is recommended to pass in INT_MAX. The size ofaxes
must be equal tostarts
andends
. Following examples will explain how slice works:Case1: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] Then: result = [ [5, 6, 7], ] Case2: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [-1, 1000] # -1 denotes the reverse 0th position of dimension 0. Then: result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
- Parameters
-
input (Tensor) – A
Tensor
. The data type isfloat16
,float32
,float64
,int32
orint64
.axes (list|tuple) – The data type is
int32
. Axes that starts and ends apply to .starts (list|tuple|Tensor) – The data type is
int32
. Ifstarts
is a list or tuple, each element of it should be integer or 0-D int Tensor with shape []. Ifstarts
is an Tensor, it should be an 1-D Tensor. It represents starting indices of corresponding axis inaxes
.ends (list|tuple|Tensor) – The data type is
int32
. Ifends
is a list or tuple, each element of it should be integer or 0-D int Tensor with shape []. Ifends
is an Tensor, it should be an 1-D Tensor . It represents ending indices of corresponding axis inaxes
.
- Returns
-
Tensor, A
Tensor
. The data type is same asinput
.
Examples
>>> import paddle >>> input = paddle.rand(shape=[4, 5, 6], dtype='float32') >>> # example 1: >>> # attr starts is a list which doesn't contain tensor. >>> axes = [0, 1, 2] >>> starts = [-3, 0, 2] >>> ends = [3, 2, 4] >>> sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends) >>> # sliced_1 is input[1:3, 0:2, 2:4]. >>> # example 2: >>> # attr starts is a list which contain tensor. >>> minus_3 = paddle.full([1], -3, "int32") >>> sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends) >>> # sliced_2 is input[1:3, 0:2, 2:4].
-
slice_scatter
(
value,
axes,
starts,
ends,
strides,
name=None
)
slice_scatter¶
-
Embeds the value tensor into x along multiple axes. Returns a new tensor instead of a view. The size of axes must be equal to starts , ends and strides.
- Parameters
-
x (Tensor) – The input Tensor. Supported data types are bool, float16, float32, float64, uint8, int8, int16, int32, int64, bfloat16, complex64, complex128.
value (Tensor) – The tensor to embed into x. Supported data types are bool, float16, float32, float64, uint8, int8, int16, int32, int64, bfloat16, complex64, complex128.
axes (list|tuple) – the dimensions to insert the value.
starts (list|tuple) – the start indices of where to insert.
ends (list|tuple) – the stop indices of where to insert.
strides (list|tuple) – the steps for each insert.
name (str, optional) – Name for the operation (optional, default is None).
- Returns
-
Tensor, same dtype and shape with x
Examples
>>> import paddle >>> x = paddle.zeros((3, 9)) >>> value = paddle.ones((3, 2)) >>> res = paddle.slice_scatter(x, value, axes=[1], starts=[2], ends=[6], strides=[2]) >>> print(res) Tensor(shape=[3, 9], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 0., 1., 0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0., 0.]]) >>> # broadcast `value` got the same result >>> x = paddle.zeros((3, 9)) >>> value = paddle.ones((3, 1)) >>> res = paddle.slice_scatter(x, value, axes=[1], starts=[2], ends=[6], strides=[2]) >>> print(res) Tensor(shape=[3, 9], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 0., 1., 0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 1., 0., 0., 0., 0.]]) >>> # broadcast `value` along multiple axes >>> x = paddle.zeros((3, 3, 5)) >>> value = paddle.ones((1, 3, 1)) >>> res = paddle.slice_scatter(x, value, axes=[0, 2], starts=[1, 0], ends=[3, 4], strides=[1, 2]) >>> print(res) Tensor(shape=[3, 3, 5], dtype=float32, place=Place(cpu), stop_gradient=True, [[[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]], [[1., 0., 1., 0., 0.], [1., 0., 1., 0., 0.], [1., 0., 1., 0., 0.]], [[1., 0., 1., 0., 0.], [1., 0., 1., 0., 0.], [1., 0., 1., 0., 0.]]])
-
solve
(
y,
name=None
)
solve¶
-
Computes the solution of a square system of linear equations with a unique solution for input ‘X’ and ‘Y’. Let \(X\) be a square matrix or a batch of square matrices, \(Y\) be a vector/matrix or a batch of vectors/matrices, the equation should be:
\[Out = X^-1 * Y\]Specifically, this system of linear equations has one solution if and only if input ‘X’ is invertible.
- Parameters
-
x (Tensor) – A square matrix or a batch of square matrices. Its shape should be
[*, M, M]
, where*
is zero or more batch dimensions. Its data type should be float32 or float64.y (Tensor) – A vector/matrix or a batch of vectors/matrices. Its shape should be
[*, M, K]
, where*
is zero or more batch dimensions. Its data type should be float32 or float64.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The solution of a square system of linear equations with a unique solution for input ‘x’ and ‘y’. Its data type should be the same as that of x.
- Return type
-
Tensor
Examples
>>> # a square system of linear equations: >>> # 2*X0 + X1 = 9 >>> # X0 + 2*X1 = 8 >>> import paddle >>> x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64") >>> y = paddle.to_tensor([9, 8], dtype="float64") >>> out = paddle.linalg.solve(x, y) >>> print(out) Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True, [2., 3.])
-
sort
(
axis=- 1,
descending=False,
stable=False,
name=None
)
sort¶
-
Sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the
descending
as True.- Parameters
-
x (Tensor) – An input N-D Tensor with type float32, float64, int16, int32, int64, uint8.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is -1.
descending (bool, optional) – Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false.
stable (bool, optional) – Whether to use stable sorting algorithm or not. When using stable sorting algorithm, the order of equivalent elements will be preserved. Default is False.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
sorted tensor(with the same shape and data type as
x
). - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([[[5,8,9,5], ... [0,0,1,7], ... [6,9,2,4]], ... [[5,2,4,2], ... [4,7,7,9], ... [1,7,0,6]]], ... dtype='float32') >>> out1 = paddle.sort(x=x, axis=-1) >>> out2 = paddle.sort(x=x, axis=0) >>> out3 = paddle.sort(x=x, axis=1) >>> print(out1.numpy()) [[[5. 5. 8. 9.] [0. 0. 1. 7.] [2. 4. 6. 9.]] [[2. 2. 4. 5.] [4. 7. 7. 9.] [0. 1. 6. 7.]]] >>> print(out2.numpy()) [[[5. 2. 4. 2.] [0. 0. 1. 7.] [1. 7. 0. 4.]] [[5. 8. 9. 5.] [4. 7. 7. 9.] [6. 9. 2. 6.]]] >>> print(out3.numpy()) [[[0. 0. 1. 4.] [5. 8. 2. 5.] [6. 9. 9. 7.]] [[1. 2. 0. 2.] [4. 7. 4. 6.] [5. 7. 7. 9.]]]
-
split
(
num_or_sections,
axis=0,
name=None
)
split¶
-
Split the input tensor into multiple sub-Tensors.
- Parameters
-
x (Tensor) – A N-D Tensor. The data type is bool, bfloat16, float16, float32, float64, uint8, int8, int32 or int64.
num_or_sections (int|list|tuple) – If
num_or_sections
is an int, thennum_or_sections
indicates the number of equal sized sub-Tensors that thex
will be divided into. Ifnum_or_sections
is a list or tuple, the length of it indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors’ dimension orderly. The length of the list must not be larger than thex
‘s size of specifiedaxis
.axis (int|Tensor, optional) – The axis along which to split, it can be a integer or a
0-D Tensor
with shape [] and data typeint32
orint64
. If :math::axis < 0, the axis to split along is \(rank(x) + axis\). Default is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
list(Tensor), The list of segmented Tensors.
Examples
>>> import paddle >>> # x is a Tensor of shape [3, 9, 5] >>> x = paddle.rand([3, 9, 5]) >>> out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1) >>> print(out0.shape) [3, 3, 5] >>> print(out1.shape) [3, 3, 5] >>> print(out2.shape) [3, 3, 5] >>> out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1) >>> print(out0.shape) [3, 2, 5] >>> print(out1.shape) [3, 3, 5] >>> print(out2.shape) [3, 4, 5] >>> out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1) >>> print(out0.shape) [3, 2, 5] >>> print(out1.shape) [3, 3, 5] >>> print(out2.shape) [3, 4, 5] >>> # axis is negative, the real axis is (rank(x) + axis)=1 >>> out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2) >>> print(out0.shape) [3, 3, 5] >>> print(out1.shape) [3, 3, 5] >>> print(out2.shape) [3, 3, 5]
-
sqrt
(
name=None
)
sqrt¶
-
Sqrt Activation Operator.
\[out=\sqrt{x}=x^{1/2}\]- Parameters
-
x (Tensor) – Input of Sqrt operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Sqrt operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4]) >>> out = paddle.sqrt(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.31622776, 0.44721359, 0.54772258, 0.63245553])
-
sqrt_
(
name=None
)
sqrt_¶
-
Inplace version of
sqrt
API, the output Tensor will be inplaced with inputx
. Please refer to sqrt.
-
square
(
name=None
)
square¶
-
Square each elements of the inputs.
\[out = x^2\]- Parameters
-
x (Tensor) – Input of Square operator, an N-D Tensor, with data type float32, float64, float16, complex64 or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Square operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.square(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.16000001, 0.04000000, 0.01000000, 0.09000000])
-
squeeze
(
axis=None,
name=None
)
squeeze¶
-
Squeeze the dimension(s) of size 1 of input tensor x’s shape.
Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode. If you want to use the Tensor copy version, please use Tensor.clone likesqueeze_clone_x = x.squeeze().clone()
.If axis is provided, it will remove the dimension(s) by given axis that of size 1. If the dimension of given axis is not of size 1, the dimension remain unchanged. If axis is not provided, all dims equal of size 1 will be removed.
Case1: Input: x.shape = [1, 3, 1, 5] # If axis is not provided, all dims equal of size 1 will be removed. axis = None Output: out.shape = [3, 5] Case2: Input: x.shape = [1, 3, 1, 5] # If axis is provided, it will remove the dimension(s) by given axis that of size 1. axis = 0 Output: out.shape = [3, 1, 5] Case4: Input: x.shape = [1, 3, 1, 5] # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. axis = [0, 2, 3] Output: out.shape = [3, 5] Case4: Input: x.shape = [1, 3, 1, 5] # If axis is negative, axis = axis + ndim (number of dimensions in x). axis = [-2] Output: out.shape = [1, 3, 5]
- Parameters
-
x (Tensor) – The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
axis (int|list|tuple, optional) – An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None. The range of axis is \([-ndim(x), ndim(x))\). If axis is negative, \(axis = axis + ndim(x)\). If axis is None, all the dimensions of x of size 1 will be removed.
name (str, optional) – Please refer to Name, Default None.
- Returns
-
Tensor, Squeezed Tensor with the same data type as input Tensor.
Examples
>>> import paddle >>> x = paddle.rand([5, 1, 10]) >>> output = paddle.squeeze(x, axis=1) >>> print(x.shape) [5, 1, 10] >>> print(output.shape) [5, 10] >>> # output shares data with x in dygraph mode >>> x[0, 0, 0] = 10. >>> print(output[0, 0]) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 10.)
-
squeeze_
(
axis=None,
name=None
)
squeeze_¶
-
Inplace version of
squeeze
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_tensor_squeeze.
-
stack
(
axis=0,
name=None
)
stack¶
-
Stacks all the input tensors
x
alongaxis
dimension. All tensors must be of the same shape and same dtype.For example, given N tensors of shape [A, B], if
axis == 0
, the shape of stacked tensor is [N, A, B]; ifaxis == 1
, the shape of stacked tensor is [A, N, B], etc.Case 1: Input: x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] Attrs: axis = 0 Output: Out.dims = [3, 1, 2] Out.data =[ [ [1.0, 2.0] ], [ [3.0, 4.0] ], [ [5.0, 6.0] ] ] Case 2: Input: x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] Attrs: axis = 1 or axis = -2 # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1. Output: Out.shape = [1, 3, 2] Out.data =[ [ [1.0, 2.0] [3.0, 4.0] [5.0, 6.0] ] ]
- Parameters
-
x (list[Tensor]|tuple[Tensor]) – Input
x
can be alist
ortuple
of tensors, the Tensors inx
must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.axis (int, optional) – The axis along which all inputs are stacked.
axis
range is[-(R+1), R+1)
, whereR
is the number of dimensions of the first input tensorx[0]
. Ifaxis < 0
,axis = axis+R+1
. The default value of axis is 0.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, The stacked tensor with same data type as input.
Examples
>>> import paddle >>> x1 = paddle.to_tensor([[1.0, 2.0]]) >>> x2 = paddle.to_tensor([[3.0, 4.0]]) >>> x3 = paddle.to_tensor([[5.0, 6.0]]) >>> out = paddle.stack([x1, x2, x3], axis=0) >>> print(out.shape) [3, 1, 2] >>> print(out) Tensor(shape=[3, 1, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[[1., 2.]], [[3., 4.]], [[5., 6.]]]) >>> out = paddle.stack([x1, x2, x3], axis=-2) >>> print(out.shape) [1, 3, 2] >>> print(out) Tensor(shape=[1, 3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[[1., 2.], [3., 4.], [5., 6.]]])
-
stanh
(
scale_a=0.67,
scale_b=1.7159,
name=None
)
stanh¶
-
stanh activation.
\[out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}\]- Parameters
-
x (Tensor) – The input Tensor with data type float32, float64.
scale_a (float, optional) – The scale factor a of the input. Default is 0.67.
scale_b (float, optional) – The scale factor b of the output. Default is 1.7159.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
A Tensor with the same data type and shape as
x
.
Examples
>>> import paddle >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0]) >>> out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [1.00616539, 1.49927628, 1.65933096, 1.70390463])
-
std
(
axis=None,
unbiased=True,
keepdim=False,
name=None
)
std¶
-
Computes the standard-deviation of
x
alongaxis
.- Parameters
-
x (Tensor) – The input Tensor with data type float16, float32, float64.
axis (int|list|tuple, optional) – The axis along which to perform standard-deviation calculations.
axis
should be int, list(int) or tuple(int). Ifaxis
is a list/tuple of dimension(s), standard-deviation is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) . Ifaxis
is None, standard-deviation is calculated over all elements ofx
. Default is None.unbiased (bool, optional) – Whether to use the unbiased estimation. If
unbiased
is True, the standard-deviation is calculated via the unbiased estimator. Ifunbiased
is True, the divisor used in the computation is \(N - 1\), where \(N\) represents the number of elements alongaxis
, otherwise the divisor is \(N\). Default is True.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of standard-deviation along
axis
ofx
, with the same data type asx
.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) >>> out1 = paddle.std(x) >>> print(out1.numpy()) 1.6329932 >>> out2 = paddle.std(x, unbiased=False) >>> print(out2.numpy()) 1.490712 >>> out3 = paddle.std(x, axis=1) >>> print(out3.numpy()) [1. 2.081666]
-
stft
(
n_fft,
hop_length=None,
win_length=None,
window=None,
center=True,
pad_mode='reflect',
normalized=False,
onesided=True,
name=None
)
stft¶
-
Short-time Fourier transform (STFT).
The STFT computes the discrete Fourier transforms (DFT) of short overlapping windows of the input using this formula:
\[X_t[f] = \sum_{n = 0}^{N-1} \text{window}[n]\ x[t \times H + n]\ e^{-{2 \pi j f n}/{N}}\]Where: - \(t\): The \(t\)-th input window. - \(f\): Frequency \(0 \leq f < \text{n_fft}\) for onesided=False, or \(0 \leq f < \lfloor \text{n_fft} / 2 \rfloor + 1\) for onesided=True. - \(N\): Value of n_fft. - \(H\): Value of hop_length.
- Parameters
-
x (Tensor) – The input data which is a 1-dimensional or 2-dimensional Tensor with shape […, seq_length]. It can be a real-valued or a complex Tensor.
n_fft (int) – The number of input samples to perform Fourier transform.
hop_length (int, optional) – Number of steps to advance between adjacent windows and 0 < hop_length. Default: None (treated as equal to n_fft//4)
win_length (int, optional) – The size of window. Default: None (treated as equal to n_fft)
window (Tensor, optional) – A 1-dimensional tensor of size win_length. It will be center padded to length n_fft if win_length < n_fft. Default: None ( treated as a rectangle window with value equal to 1 of size win_length).
center (bool, optional) – Whether to pad x to make that the \(t \times hop\_length\) at the center of \(t\)-th frame. Default: True.
pad_mode (str, optional) – Choose padding pattern when center is True. See paddle.nn.functional.pad for all padding options. Default: “reflect”
normalized (bool, optional) – Control whether to scale the output by 1/sqrt(n_fft). Default: False
onesided (bool, optional) – Control whether to return half of the Fourier transform output that satisfies the conjugate symmetry condition when input is a real-valued tensor. It can not be True if input is a complex tensor. Default: True
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The complex STFT output tensor with shape […, n_fft//2 + 1, num_frames] (real-valued input and onesided is True) or […, n_fft, num_frames] (onesided is False)
Examples
>>> import paddle >>> from paddle.signal import stft >>> # real-valued input >>> x = paddle.randn([8, 48000], dtype=paddle.float64) >>> y1 = stft(x, n_fft=512) >>> print(y1.shape) [8, 257, 376] >>> y2 = stft(x, n_fft=512, onesided=False) >>> print(y2.shape) [8, 512, 376] >>> # complex input >>> x = paddle.randn([8, 48000], dtype=paddle.float64) + \ ... paddle.randn([8, 48000], dtype=paddle.float64)*1j >>> print(x.shape) [8, 48000] >>> print(x.dtype) paddle.complex128 >>> y1 = stft(x, n_fft=512, center=False, onesided=False) >>> print(y1.shape) [8, 512, 372]
-
strided_slice
(
axes,
starts,
ends,
strides,
name=None
)
strided_slice¶
-
This operator produces a slice of
x
along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice usesaxes
,starts
andends
attributes to specify the start and end dimension for each axis in the list of axes and Slice uses this information to slice the input data tensor. If a negative value is passed tostarts
orends
such as \(-i\), it represents the reverse position of the axis \(i-1\) th(here 0 is the initial position). Thestrides
represents steps of slicing and if thestrides
is negative, slice operation is in the opposite direction. If the value passed tostarts
orends
is greater than n (the number of elements in this dimension), it represents n. For slicing to the end of a dimension with unknown size, it is recommended to pass in INT_MAX. The size ofaxes
must be equal tostarts
,ends
andstrides
. Following examples will explain how strided_slice works:Case1: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] strides = [1, 1] Then: result = [ [5, 6, 7], ] Case2: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [2, 0] strides = [1, -1] Then: result = [ [8, 7, 6], ] Case3: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [-1, 1000] strides = [1, 3] Then: result = [ [2], ]
- Parameters
-
x (Tensor) – An N-D
Tensor
. The data type isbool
,float16
,float32
,float64
,int32
orint64
.axes (list|tuple) – The data type is
int32
. Axes that starts and ends apply to. It’s optional. If it is not provides, it will be treated as \([0,1,...,len(starts)-1]\).starts (list|tuple|Tensor) – The data type is
int32
. Ifstarts
is a list or tuple, the elements of it should be integers or Tensors with shape []. Ifstarts
is an Tensor, it should be an 1-D Tensor. It represents starting indices of corresponding axis inaxes
.ends (list|tuple|Tensor) – The data type is
int32
. Ifends
is a list or tuple, the elements of it should be integers or Tensors with shape []. Ifends
is an Tensor, it should be an 1-D Tensor. It represents ending indices of corresponding axis inaxes
.strides (list|tuple|Tensor) – The data type is
int32
. Ifstrides
is a list or tuple, the elements of it should be integers or Tensors with shape []. Ifstrides
is an Tensor, it should be an 1-D Tensor. It represents slice step of corresponding axis inaxes
.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Tensor, A
Tensor
with the same dimension asx
. The data type is same asx
.
Examples
>>> import paddle >>> x = paddle.zeros(shape=[3,4,5,6], dtype="float32") >>> # example 1: >>> # attr starts is a list which doesn't contain Tensor. >>> axes = [1, 2, 3] >>> starts = [-3, 0, 2] >>> ends = [3, 2, 4] >>> strides_1 = [1, 1, 1] >>> strides_2 = [1, 1, 2] >>> sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1) >>> # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1]. >>> # example 2: >>> # attr starts is a list which contain tensor Tensor. >>> minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32') >>> sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2) >>> # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
-
subtract
(
y,
name=None
)
subtract¶
-
Subtract two tensors element-wise. The equation is:
\[out = x - y\]Note
paddle.subtract
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [7, 8]]) >>> y = paddle.to_tensor([[5, 6], [3, 4]]) >>> res = paddle.subtract(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[-4, -4], [ 4, 4]]) >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]]) >>> y = paddle.to_tensor([1, 0, 4]) >>> res = paddle.subtract(x, y) >>> print(res) Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[[ 0, 2, -1], [ 0, 2, -1]]]) >>> x = paddle.to_tensor([2, float('nan'), 5], dtype='float32') >>> y = paddle.to_tensor([1, 4, float('nan')], dtype='float32') >>> res = paddle.subtract(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1. , nan, nan]) >>> x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64') >>> y = paddle.to_tensor([1, 4, 5], dtype='float64') >>> res = paddle.subtract(x, y) >>> print(res) Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True, [ 4. , inf., -inf.])
-
subtract_
(
y,
name=None
)
subtract_¶
-
Inplace version of
subtract
API, the output Tensor will be inplaced with inputx
. Please refer to subtract.
-
sum
(
axis=None,
dtype=None,
keepdim=False,
name=None
)
sum¶
-
Computes the sum of tensor elements over the given dimension.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
axis (int|list|tuple, optional) – The dimensions along which the sum is performed. If
None
, sum all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).dtype (str, optional) – The dtype of output Tensor. The default value is None, the dtype of output is the same as input Tensor x.
keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Results of summation operation on the specified axis of input Tensor x, if x.dtype=’bool’, x.dtype=’int32’, it’s data type is ‘int64’, otherwise it’s data type is the same as x.
- Return type
-
Tensor
Examples
>>> import paddle >>> # x is a Tensor with following elements: >>> # [[0.2, 0.3, 0.5, 0.9] >>> # [0.1, 0.2, 0.6, 0.7]] >>> # Each example is followed by the corresponding output tensor. >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], ... [0.1, 0.2, 0.6, 0.7]]) >>> out1 = paddle.sum(x) >>> out1 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 3.50000000) >>> out2 = paddle.sum(x, axis=0) >>> out2 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.30000001, 0.50000000, 1.10000002, 1.59999990]) >>> out3 = paddle.sum(x, axis=-1) >>> out3 Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [1.89999998, 1.60000002]) >>> out4 = paddle.sum(x, axis=1, keepdim=True) >>> out4 Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.89999998], [1.60000002]]) >>> # y is a Tensor with shape [2, 2, 2] and elements as below: >>> # [[[1, 2], [3, 4]], >>> # [[5, 6], [7, 8]]] >>> # Each example is followed by the corresponding output tensor. >>> y = paddle.to_tensor([[[1, 2], [3, 4]], ... [[5, 6], [7, 8]]]) >>> out5 = paddle.sum(y, axis=[1, 2]) >>> out5 Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True, [10, 26]) >>> out6 = paddle.sum(y, axis=[0, 1]) >>> out6 Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True, [16, 20]) >>> # x is a Tensor with following elements: >>> # [[True, True, True, True] >>> # [False, False, False, False]] >>> # Each example is followed by the corresponding output tensor. >>> x = paddle.to_tensor([[True, True, True, True], ... [False, False, False, False]]) >>> out7 = paddle.sum(x) >>> out7 Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 4) >>> out8 = paddle.sum(x, axis=0) >>> out8 Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 1, 1, 1]) >>> out9 = paddle.sum(x, axis=1) >>> out9 Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True, [4, 0])
-
svd_lowrank
(
q=None,
niter=2,
M=None,
name=None
)
svd_lowrank¶
-
Return the singular value decomposition (SVD) on a low-rank matrix or batches of such matrices.
If \(X\) is the input matrix or a batch of input matrices, the output should satisfies:
\[X \approx U * diag(S) * V^{T}\]When \(M\) is given, the output should satisfies:
\[X - M \approx U * diag(S) * V^{T}\]- Parameters
-
x (Tensor) – The input tensor. Its shape should be […, N, M], where … is zero or more batch dimensions. N and M can be arbitrary positive number. The data type of
x
should be float32 or float64.q (int, optional) – A slightly overestimated rank of \(X\). Default value is None, which means the overestimated rank is 6.
niter (int, optional) – The number of iterations to perform. Default: 2.
M (Tensor, optional) – The input tensor’s mean. Its shape should be […, 1, M]. Default value is None.
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
Tensor U, is N x q matrix.
Tensor S, is a vector with length q.
Tensor V, is M x q matrix.
tuple (U, S, V): which is the nearly optimal approximation of a singular value decomposition of the matrix \(X\) or \(X - M\).
Examples
>>> import paddle >>> paddle.seed(2024) >>> x = paddle.randn((5, 5), dtype='float64') >>> U, S, V = paddle.linalg.svd_lowrank(x) >>> print(U) Tensor(shape=[5, 5], dtype=float64, place=Place(cpu), stop_gradient=True, [[-0.03586982, -0.17211503, 0.31536566, -0.38225676, -0.85059629], [-0.38386839, 0.67754925, 0.23222694, 0.51777188, -0.26749766], [-0.85977150, -0.28442378, -0.41412094, -0.08955629, -0.01948348], [ 0.18611503, 0.56047358, -0.67717019, -0.39286761, -0.19577062], [ 0.27841082, -0.34099254, -0.46535957, 0.65071250, -0.40770727]]) >>> print(S) Tensor(shape=[5], dtype=float64, place=Place(cpu), stop_gradient=True, [4.11253399, 3.03227120, 2.45499752, 1.25602436, 0.45825337]) >>> print(V) Tensor(shape=[5, 5], dtype=float64, place=Place(cpu), stop_gradient=True, [[ 0.46401347, 0.50977695, -0.08742316, -0.11140428, -0.71046833], [-0.48927226, -0.35047624, 0.07918771, 0.45431083, -0.65200463], [-0.20494730, 0.67097011, -0.05427719, 0.66510472, 0.24997083], [-0.69645001, 0.40237917, 0.09360970, -0.58032322, -0.08666357], [ 0.13512270, 0.07199989, 0.98710572, 0.04529277, 0.01134594]])
-
t
(
name=None
)
t¶
-
Transpose <=2-D tensor. 0-D and 1-D tensors are returned as it is and 2-D tensor is equal to the paddle.transpose function which perm dimensions set 0 and 1.
- Parameters
-
input (Tensor) – The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
- Return type
-
Tensor
Examples
>>> import paddle >>> # Example 1 (0-D tensor) >>> x = paddle.to_tensor([0.79]) >>> out = paddle.t(x) >>> print(out) Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [0.79000002]) >>> # Example 2 (1-D tensor) >>> x = paddle.to_tensor([0.79, 0.84, 0.32]) >>> out2 = paddle.t(x) >>> print(out2) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [0.79000002, 0.83999997, 0.31999999]) >>> print(paddle.t(x).shape) [3] >>> # Example 3 (2-D tensor) >>> x = paddle.to_tensor([[0.79, 0.84, 0.32], ... [0.64, 0.14, 0.57]]) >>> print(x.shape) [2, 3] >>> out3 = paddle.t(x) >>> print(out3) Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.79000002, 0.63999999], [0.83999997, 0.14000000], [0.31999999, 0.56999999]]) >>> print(paddle.t(x).shape) [3, 2]
-
t_
(
name=None
)
t_¶
-
Inplace version of
t
API, the output Tensor will be inplaced with inputinput
. Please refer to t.
-
take
(
index,
mode='raise',
name=None
)
take¶
-
Returns a new tensor with the elements of input tensor x at the given index. The input tensor is treated as if it were viewed as a 1-D tensor. The result takes the same shape as the index.
- Parameters
-
x (Tensor) – An N-D Tensor, its data type should be int32, int64, float32, float64.
index (Tensor) – An N-D Tensor, its data type should be int32, int64.
mode (str, optional) –
Specifies how out-of-bounds index will behave. the candidates are
'raise'
,'wrap'
and'clip'
.'raise'
: raise an error (default);'wrap'
: wrap around;'clip'
: clip to the range.'clip'
mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, Tensor with the same shape as index, the data type is the same with input.
Examples
>>> import paddle >>> x_int = paddle.arange(0, 12).reshape([3, 4]) >>> x_float = x_int.astype(paddle.float64) >>> idx_pos = paddle.arange(4, 10).reshape([2, 3]) # positive index >>> idx_neg = paddle.arange(-2, 4).reshape([2, 3]) # negative index >>> idx_err = paddle.arange(-2, 13).reshape([3, 5]) # index out of range >>> paddle.take(x_int, idx_pos) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[4, 5, 6], [7, 8, 9]]) >>> paddle.take(x_int, idx_neg) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[10, 11, 0 ], [1 , 2 , 3 ]]) >>> paddle.take(x_float, idx_pos) Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[4., 5., 6.], [7., 8., 9.]]) >>> x_int.take(idx_pos) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[4, 5, 6], [7, 8, 9]]) >>> paddle.take(x_int, idx_err, mode='wrap') Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True, [[10, 11, 0 , 1 , 2 ], [3 , 4 , 5 , 6 , 7 ], [8 , 9 , 10, 11, 0 ]]) >>> paddle.take(x_int, idx_err, mode='clip') Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 0 , 0 , 1 , 2 ], [3 , 4 , 5 , 6 , 7 ], [8 , 9 , 10, 11, 11]])
-
take_along_axis
(
indices,
axis,
broadcast=True
)
take_along_axis¶
-
Take values from the input array by given indices matrix along the designated axis.
- Parameters
-
arr (Tensor) – The input Tensor. Supported data types are float32 and float64.
indices (Tensor) – Indices to take along each 1d slice of arr. This must match the dimension of arr, and need to broadcast against arr. Supported data type are int and int64.
axis (int) – The axis to take 1d slices along.
broadcast (bool, optional) – whether the indices broadcast.
- Returns
-
Tensor, The indexed element, same dtype with arr
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]]) >>> index = paddle.to_tensor([[0]]) >>> axis = 0 >>> result = paddle.take_along_axis(x, index, axis) >>> print(result) Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 2, 3]])
-
tan
(
name=None
)
tan¶
-
Tangent Operator. Computes tangent of x element-wise.
Input range is (k*pi-pi/2, k*pi+pi/2) and output range is (-inf, inf).
\[out = tan(x)\]- Parameters
-
x (Tensor) – Input of Tan operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. Output of Tan operator, a Tensor with shape same as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.tan(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.42279324, -0.20271003, 0.10033467, 0.30933627])
-
tan_
(
name=None
)
tan_¶
-
Inplace version of
tan
API, the output Tensor will be inplaced with inputx
. Please refer to tan.
-
tanh
(
name=None
)
tanh¶
-
Tanh Activation Operator.
\[out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\]- Parameters
-
x (Tensor) – Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Tanh operator, a Tensor with same data type and shape as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) >>> out = paddle.tanh(x) >>> out Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.37994900, -0.19737528, 0.09966799, 0.29131261])
-
tanh_
(
name=None
)
tanh_¶
-
Inplace version of
tanh
API, the output Tensor will be inplaced with inputx
. Please refer to tanh.
-
tensor_split
(
num_or_indices,
axis=0,
name=None
)
tensor_split¶
-
Split the input tensor into multiple sub-Tensors along
axis
, allowing not being of equal size.- Parameters
-
x (Tensor) – A Tensor whose dimension must be greater than 0. The data type is bool, bfloat16, float16, float32, float64, uint8, int32 or int64.
num_or_indices (int|list|tuple) – If
num_or_indices
is an intn
,x
is split inton
sections alongaxis
. Ifx
is divisible byn
, each section will bex.shape[axis] / n
. Ifx
is not divisible byn
, the firstint(x.shape[axis] % n)
sections will have sizeint(x.shape[axis] / n) + 1
, and the rest will beint(x.shape[axis] / n). If ``num_or_indices
is a list or tuple of integer indices,x
is split alongaxis
at each of the indices. For instance,num_or_indices=[2, 4]
withaxis=0
would splitx
intox[:2]
,x[2:4]
andx[4:]
along axis 0.axis (int|Tensor, optional) – The axis along which to split, it can be a integer or a
0-D Tensor
with shape [] and data typeint32
orint64
. If :math::axis < 0, the axis to split along is \(rank(x) + axis\). Default is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
list[Tensor], The list of segmented Tensors.
Examples
>>> import paddle >>> # x is a Tensor of shape [8] >>> # evenly split >>> x = paddle.rand([8]) >>> out0, out1 = paddle.tensor_split(x, num_or_indices=2) >>> print(out0.shape) [4] >>> print(out1.shape) [4] >>> # not evenly split >>> out0, out1, out2 = paddle.tensor_split(x, num_or_indices=3) >>> print(out0.shape) [3] >>> print(out1.shape) [3] >>> print(out2.shape) [2] >>> # split with indices >>> out0, out1, out2 = paddle.tensor_split(x, num_or_indices=[2, 3]) >>> print(out0.shape) [2] >>> print(out1.shape) [1] >>> print(out2.shape) [5] >>> # split along axis >>> # x is a Tensor of shape [7, 8] >>> x = paddle.rand([7, 8]) >>> out0, out1 = paddle.tensor_split(x, num_or_indices=2, axis=1) >>> print(out0.shape) [7, 4] >>> print(out1.shape) [7, 4] >>> out0, out1, out2 = paddle.tensor_split(x, num_or_indices=[2, 3], axis=1) >>> print(out0.shape) [7, 2] >>> print(out1.shape) [7, 1] >>> print(out2.shape) [7, 5]
-
tensordot
(
y,
axes=2,
name=None
)
tensordot¶
-
This function computes a contraction, which sum the product of elements from two tensors along the given axes.
- Parameters
-
x (Tensor) – The left tensor for contraction with data type
float16
orfloat32
orfloat64
.y (Tensor) – The right tensor for contraction with the same data type as
x
.axes (int|tuple|list|Tensor, optional) –
The axes to contract for
x
andy
, defaulted to integer2
.It could be a non-negative integer
n
, in which the function will sum over the lastn
axes ofx
and the firstn
axes ofy
in order.It could be a 1-d tuple or list with data type
int
, in whichx
andy
will be contracted along the same given axes. For example,axes
=[0, 1] applies contraction along the first two axes forx
and the first two axes fory
.It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type
int
. When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes forx
andy
to contract. When containing two tuple|list|Tensor, the first will be applied tox
and the second toy
. When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.It could be a tensor, in which the
axes
tensor will be translated to a python list and applied the same rules described above to determine the contraction axes. Note that theaxes
with Tensor type is ONLY available in Dygraph mode.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Output (Tensor), The contraction result with the same data type as
x
andy
. In general, \(output.ndim = x.ndim + y.ndim - 2 \times n_{axes}\), where \(n_{axes}\) denotes the number of axes to be contracted.
Notes
This function supports tensor broadcast, the size in the corresponding dimensions of
x
andy
should be equal, or applies to the broadcast rules.This function also supports axes expansion, when the two given axis sequences for
x
andy
are of different lengths, the shorter sequence will expand the same axes as the longer one at the end. For example, ifaxes
=[[0, 1, 2, 3], [1, 0]], the axis sequence forx
is [0, 1, 2, 3], while the corresponding axis sequences fory
will be expanded from [1, 0] to [1, 0, 2, 3].
Examples
>>> import paddle >>> data_type = 'float64' >>> # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product. >>> # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases. >>> x = paddle.arange(4, dtype=data_type).reshape([2, 2]) >>> y = paddle.arange(4, dtype=data_type).reshape([2, 2]) >>> z = paddle.tensordot(x, y, axes=0) >>> print(z) Tensor(shape=[2, 2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[[[0., 0.], [0., 0.]], [[0., 1.], [2., 3.]]], [[[0., 2.], [4., 6.]], [[0., 3.], [6., 9.]]]]) >>> # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product. >>> x = paddle.arange(10, dtype=data_type) >>> y = paddle.arange(10, dtype=data_type) >>> z1 = paddle.tensordot(x, y, axes=1) >>> z2 = paddle.dot(x, y) >>> print(z1) Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True, 285.) >>> print(z2) Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True, 285.) >>> # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication. >>> x = paddle.arange(6, dtype=data_type).reshape([2, 3]) >>> y = paddle.arange(12, dtype=data_type).reshape([3, 4]) >>> z1 = paddle.tensordot(x, y, axes=1) >>> z2 = paddle.matmul(x, y) >>> print(z1) Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=True, [[20., 23., 26., 29.], [56., 68., 80., 92.]]) >>> print(z2) Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=True, [[20., 23., 26., 29.], [56., 68., 80., 92.]]) >>> # When axes is a 1-d int list, x and y will be contracted along the same given axes. >>> # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]]. >>> x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4]) >>> y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4]) >>> z = paddle.tensordot(x, y, axes=[1, 2]) >>> print(z) Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[506. , 1298., 2090.], [1298., 3818., 6338.]]) >>> # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y. >>> x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5]) >>> y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2]) >>> z = paddle.tensordot(x, y, axes=([1, 0], [0, 1])) >>> print(z) Tensor(shape=[5, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]]. >>> x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6]) >>> y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6]) >>> z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]]) >>> print(z) Tensor(shape=[4, 4], dtype=float64, place=Place(cpu), stop_gradient=True, [[23217330., 24915630., 26613930., 28312230.], [24915630., 26775930., 28636230., 30496530.], [26613930., 28636230., 30658530., 32680830.], [28312230., 30496530., 32680830., 34865130.]])
-
tile
(
repeat_times,
name=None
)
tile¶
-
Construct a new Tensor by repeating
x
the number of times given byrepeat_times
. After tiling, the value of the i’th dimension of the output is equal tox.shape[i]*repeat_times[i]
.Both the number of dimensions of
x
and the number of elements inrepeat_times
should be less than or equal to 6.- Parameters
-
x (Tensor) – The input tensor, its data type should be bool, float16, float32, float64, int32, int64, complex64 or complex128.
repeat_times (list|tuple|Tensor) – The number of repeating times. If repeat_times is a list or tuple, all its elements should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. The data type is the same as
x
. The size of the i-th dimension is equal tox[i] * repeat_times[i]
.
Examples
>>> import paddle >>> data = paddle.to_tensor([1, 2, 3], dtype='int32') >>> out = paddle.tile(data, repeat_times=[2, 1]) >>> print(out) Tensor(shape=[2, 3], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3], [1, 2, 3]]) >>> out = paddle.tile(data, repeat_times=(2, 2)) >>> print(out) Tensor(shape=[2, 6], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]) >>> repeat_times = paddle.to_tensor([1, 2], dtype='int32') >>> out = paddle.tile(data, repeat_times=repeat_times) >>> print(out) Tensor(shape=[1, 6], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3, 1, 2, 3]])
-
top_p_sampling
(
ps,
threshold=None,
seed=None,
name=None
)
top_p_sampling¶
-
Get the TopP scores and ids according to the cumulative threshold ps.
- Parameters
-
x (Tensor) – A N-D Tensor with type float32, float16 and bfloat16.
ps (Tensor) – A 1-D Tensor with type float32, float16 and bfloat16. it is the cumulative probability threshold to limit low probability input.
threshold (Tensor) – A 1-D Tensor with type float32, float16 and bfloat16. it is the absolute probability threshold to limit input, it will take effect simultaneously with ps, if not set, the default value is 0.f.
seed (int, optional) – the random seed,
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
tuple(Tensor), return the values and indices. The value data type is the same as the input x. The indices data type is int64.
Examples
>>> >>> import paddle >>> paddle.device.set_device('gpu') >>> paddle.seed(2023) >>> x = paddle.randn([2,3]) >>> print(x) Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[-0.32012719, -0.07942779, 0.26011357], [ 0.79003978, -0.39958701, 1.42184138]]) >>> paddle.seed(2023) >>> ps = paddle.randn([2]) >>> print(ps) Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True, [-0.32012719, -0.07942779]) >>> value, index = paddle.tensor.top_p_sampling(x, ps) >>> print(value) Tensor(shape=[2, 1], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[0.26011357], [1.42184138]]) >>> print(index) Tensor(shape=[2, 1], dtype=int64, place=Place(gpu:0), stop_gradient=True, [[2], [2]])
-
topk
(
k,
axis=None,
largest=True,
sorted=True,
name=None
)
topk¶
-
Return values and indices of the k largest or smallest at the optional axis. If the input is a 1-D Tensor, finds the k largest or smallest values and indices. If the input is a Tensor with higher rank, this operator computes the top k values and indices along the
axis
.- Parameters
-
x (Tensor) – Tensor, an input N-D Tensor with type float32, float64, int32, int64.
k (int, Tensor) – The number of top elements to look for along the axis.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is -1.
largest (bool, optional) – largest is a flag, if set to true, algorithm will sort by descending order, otherwise sort by ascending order. Default is True.
sorted (bool, optional) – controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
tuple(Tensor), return the values and indices. The value data type is the same as the input x. The indices data type is int64.
Examples
>>> import paddle >>> data_1 = paddle.to_tensor([1, 4, 5, 7]) >>> value_1, indices_1 = paddle.topk(data_1, k=1) >>> print(value_1) Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True, [7]) >>> print(indices_1) Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True, [3]) >>> data_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]]) >>> value_2, indices_2 = paddle.topk(data_2, k=1) >>> print(value_2) Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[7], [6]]) >>> print(indices_2) Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[3], [1]]) >>> value_3, indices_3 = paddle.topk(data_2, k=1, axis=-1) >>> print(value_3) Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[7], [6]]) >>> print(indices_3) Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[3], [1]]) >>> value_4, indices_4 = paddle.topk(data_2, k=1, axis=0) >>> print(value_4) Tensor(shape=[1, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[2, 6, 5, 7]]) >>> print(indices_4) Tensor(shape=[1, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[1, 1, 0, 0]])
-
trace
(
offset=0,
axis1=0,
axis2=1,
name=None
)
trace¶
-
Computes the sum along diagonals of the input tensor x.
If
x
is 2D, returns the sum of diagonal.If
x
has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes of the input tensor x.The argument
offset
determines where diagonals are taken from input tensor x:If offset = 0, it is the main diagonal.
If offset > 0, it is above the main diagonal.
If offset < 0, it is below the main diagonal.
Note that if offset is out of input’s shape indicated by axis1 and axis2, 0 will be returned.
- Parameters
-
x (Tensor) – The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
offset (int, optional) – Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
axis1 (int, optional) – The first axis with respect to take diagonal. Default: 0.
axis2 (int, optional) – The second axis with respect to take diagonal. Default: 1.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
the output data type is the same as input data type.
- Return type
-
Tensor
Examples
>>> import paddle >>> case1 = paddle.randn([2, 3]) >>> case2 = paddle.randn([3, 10, 10]) >>> case3 = paddle.randn([3, 10, 5, 10]) >>> data1 = paddle.trace(case1) >>> data1.shape [] >>> data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) >>> data2.shape [3] >>> data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) >>> data3.shape [3, 5]
-
transpose
(
perm,
name=None
)
transpose¶
-
Permute the data dimensions of input according to perm.
The i-th dimension of the returned tensor will correspond to the perm[i]-th dimension of input.
- Parameters
-
x (Tensor) – The input Tensor. It is a N-D Tensor of data types bool, float16, bfloat16, float32, float64, int8, int16, int32, int64, uint8, uint16, complex64, complex128.
perm (list|tuple) – Permute the input according to the data of perm.
name (str, optional) – The name of this layer. For more information, please refer to Name. Default is None.
- Returns
-
A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
- Return type
-
Tensor
Examples
# The following codes in this code block are pseudocode, designed to show the execution logic and results of the function. x = to_tensor([[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]) shape(x): return [2,3,4] # Example 1 perm0 = [1,0,2] y_perm0 = transpose(x, perm0) # Permute x by perm0 # dim:0 of y_perm0 is dim:1 of x # dim:1 of y_perm0 is dim:0 of x # dim:2 of y_perm0 is dim:2 of x # The above two lines can also be understood as exchanging the zeroth and first dimensions of x y_perm0.data = [[[ 1 2 3 4] [13 14 15 16]] [[ 5 6 7 8] [17 18 19 20]] [[ 9 10 11 12] [21 22 23 24]]] shape(y_perm0): return [3,2,4] # Example 2 perm1 = [2,1,0] y_perm1 = transpose(x, perm1) # Permute x by perm1 # dim:0 of y_perm1 is dim:2 of x # dim:1 of y_perm1 is dim:1 of x # dim:2 of y_perm1 is dim:0 of x # The above two lines can also be understood as exchanging the zeroth and second dimensions of x y_perm1.data = [[[ 1 13] [ 5 17] [ 9 21]] [[ 2 14] [ 6 18] [10 22]] [[ 3 15] [ 7 19] [11 23]] [[ 4 16] [ 8 20] [12 24]]] shape(y_perm1): return [4,3,2]
Examples
>>> import paddle >>> x = paddle.randn([2, 3, 4]) >>> x_transposed = paddle.transpose(x, perm=[1, 0, 2]) >>> print(x_transposed.shape) [3, 2, 4]
-
transpose_
(
perm,
name=None
)
transpose_¶
-
Inplace version of
transpose
API, the output Tensor will be inplaced with inputx
. Please refer to transpose.
-
trapezoid
(
x=None,
dx=None,
axis=- 1,
name=None
)
trapezoid¶
-
Integrate along the given axis using the composite trapezoidal rule. Use the sum method.
- Parameters
-
y (Tensor) – Input tensor to integrate. It’s data type should be float16, float32, float64.
x (Tensor, optional) – The sample points corresponding to the
y
values, the same type asy
. It is known that the size ofy
is [d_1, d_2, … , d_n] and \(axis=k\), then the size ofx
can only be [d_k] or [d_1, d_2, … , d_n ]. Ifx
is None, the sample points are assumed to be evenly spaceddx
apart. The default is None.dx (float, optional) – The spacing between sample points when
x
is None. If neitherx
nordx
is provided then the default is \(dx = 1\).axis (int, optional) – The axis along which to integrate. The default is -1.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, Definite integral of
y
is N-D tensor as approximated along a single axis by the trapezoidal rule. Ify
is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.
Examples
>>> import paddle >>> y = paddle.to_tensor([4, 5, 6], dtype='float32') >>> paddle.trapezoid(y) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 10.) >>> paddle.trapezoid(y, dx=2.) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 20.) >>> y = paddle.to_tensor([4, 5, 6], dtype='float32') >>> x = paddle.to_tensor([1, 2, 3], dtype='float32') >>> paddle.trapezoid(y, x) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 10.) >>> y = paddle.to_tensor([1, 2, 3], dtype='float64') >>> x = paddle.to_tensor([8, 6, 4], dtype='float64') >>> paddle.trapezoid(y, x) Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True, -8.) >>> y = paddle.arange(6).reshape((2, 3)).astype('float32') >>> paddle.trapezoid(y, axis=0) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1.50000000, 2.50000000, 3.50000000]) >>> paddle.trapezoid(y, axis=1) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [2., 8.])
-
tril
(
diagonal=0,
name=None
)
tril¶
-
Returns the lower triangular part of a matrix (2-D tensor) or batch of matrices
x
, the other elements of the result tensor are set to 0. The lower triangular part of the matrix is defined as the elements on and below the diagonal.- Parameters
-
x (Tensor) – The input x which is a Tensor. Support data types:
bool
,float64
,float32
,int32
,int64
,complex64
,complex128
.diagonal (int, optional) – The diagonal to consider, default value is 0. If
diagonal
= 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices \(\{(i, i)\}\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) where \(d_{1}, d_{2}\) are the dimensions of the matrix.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Results of lower triangular operation by the specified diagonal of input tensor x, it’s data type is the same as x’s Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> data = paddle.arange(1, 13, dtype="int64").reshape([3,-1]) >>> print(data) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 , 4 ], [5 , 6 , 7 , 8 ], [9 , 10, 11, 12]]) >>> tril1 = paddle.tril(data) >>> print(tril1) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 0 , 0 , 0 ], [5 , 6 , 0 , 0 ], [9 , 10, 11, 0 ]]) >>> # example 2, positive diagonal value >>> tril2 = paddle.tril(data, diagonal=2) >>> print(tril2) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 , 0 ], [5 , 6 , 7 , 8 ], [9 , 10, 11, 12]]) >>> # example 3, negative diagonal value >>> tril3 = paddle.tril(data, diagonal=-1) >>> print(tril3) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 0 , 0 , 0 ], [5 , 0 , 0 , 0 ], [9 , 10, 0 , 0 ]])
-
tril_
(
diagonal=0,
name=None
)
tril_¶
-
Inplace version of
tril
API, the output Tensor will be inplaced with inputx
. Please refer to tril.
-
triu
(
diagonal=0,
name=None
)
triu¶
-
Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
x
, the other elements of the result tensor are set to 0. The upper triangular part of the matrix is defined as the elements on and above the diagonal.- Parameters
-
x (Tensor) – The input x which is a Tensor. Support data types:
float64
,float32
,int32
,int64
,complex64
,complex128
.diagonal (int, optional) – The diagonal to consider, default value is 0. If
diagonal
= 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices \(\{(i, i)\}\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) where \(d_{1}, d_{2}\) are the dimensions of the matrix.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Results of upper triangular operation by the specified diagonal of input tensor x, it’s data type is the same as x’s Tensor.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.arange(1, 13, dtype="int64").reshape([3,-1]) >>> print(x) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 , 4 ], [5 , 6 , 7 , 8 ], [9 , 10, 11, 12]]) >>> # example 1, default diagonal >>> triu1 = paddle.tensor.triu(x) >>> print(triu1) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 , 4 ], [0 , 6 , 7 , 8 ], [0 , 0 , 11, 12]]) >>> # example 2, positive diagonal value >>> triu2 = paddle.tensor.triu(x, diagonal=2) >>> print(triu2) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 3, 4], [0, 0, 0, 8], [0, 0, 0, 0]]) >>> # example 3, negative diagonal value >>> triu3 = paddle.tensor.triu(x, diagonal=-1) >>> print(triu3) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 , 4 ], [5 , 6 , 7 , 8 ], [0 , 10, 11, 12]])
-
triu_
(
diagonal=0,
name=None
)
triu_¶
-
Inplace version of
triu
API, the output Tensor will be inplaced with inputx
. Please refer to triu.
-
trunc
(
name=None
)
trunc¶
-
This API is used to returns a new tensor with the truncated integer values of input.
- Parameters
-
input (Tensor) – The input tensor, it’s data type should be int32, int64, float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output Tensor of trunc.
- Return type
-
Tensor
Examples
>>> import paddle >>> input = paddle.to_tensor([[0.1, 1.5], [-0.2, -2.4]], 'float32') >>> output = paddle.trunc(input) >>> output Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0., 1.], [-0., -2.]])
-
trunc_
(
name=None
)
trunc_¶
-
Inplace version of
trunc
API, the output Tensor will be inplaced with inputx
. Please refer to trunc.
-
unbind
(
axis=0
)
unbind¶
-
Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
- Parameters
-
input (Tensor) – The input variable which is an N-D Tensor, data type being bool, float16, float32, float64, int32, int64, complex64 or complex128.
axis (int32|int64, optional) – A 0-D Tensor with shape [] and type is
int32|int64
. The dimension along which to unbind. If \(axis < 0\), the dimension to unbind along is \(rank(input) + axis\). Default is 0.
- Returns
-
list(Tensor), The list of segmented Tensor variables.
Examples
>>> import paddle >>> # input is a Tensor which shape is [3, 4, 5] >>> input = paddle.rand([3, 4, 5]) >>> [x0, x1, x2] = paddle.unbind(input, axis=0) >>> # x0.shape [4, 5] >>> # x1.shape [4, 5] >>> # x2.shape [4, 5] >>> [x0, x1, x2, x3] = paddle.unbind(input, axis=1) >>> # x0.shape [3, 5] >>> # x1.shape [3, 5] >>> # x2.shape [3, 5] >>> # x3.shape [3, 5]
-
unflatten
(
axis,
shape,
name=None
)
unflatten¶
-
Expand a certain dimension of the input x Tensor into a desired shape.
- Parameters
-
x (Tensor) – An N-D Tensor. The data type is float16, float32, float64, int16, int32, int64, bool, uint16.
axis (int) –
axis
to be unflattened, specified as an index into x.shape.shape (list|tuple|Tensor) – Unflatten
shape
on the specifiedaxis
. At most one dimension of the targetshape
can be -1. If the inputshape
does not contain -1 , the product of all elements inshape
should be equal tox.shape[axis]
. The data type is int . Ifshape
is a list or tuple, the elements of it should be integers or Tensors with shape []. Ifshape
is an Tensor, it should be an 1-D Tensor.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, return the unflatten tensor of
x
.
Examples
>>> import paddle >>> x = paddle.randn(shape=[4, 6, 8]) >>> shape = [2, 3] >>> axis = 1 >>> res = paddle.unflatten(x, axis, shape) >>> print(res.shape) [4, 2, 3, 8] >>> x = paddle.randn(shape=[4, 6, 8]) >>> shape = (-1, 2) >>> axis = -1 >>> res = paddle.unflatten(x, axis, shape) >>> print(res.shape) [4, 6, 4, 2] >>> x = paddle.randn(shape=[4, 6, 8]) >>> shape = paddle.to_tensor([2, 2]) >>> axis = 0 >>> res = paddle.unflatten(x, axis, shape) >>> print(res.shape) [2, 2, 6, 8]
-
unfold
(
axis,
size,
step,
name=None
)
unfold¶
-
View x with specified shape, stride and offset, which contains all slices of size from x in the dimension axis.
Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode.- Parameters
-
x (Tensor) – An N-D Tensor. The data type is
float32
,float64
,int32
,int64
orbool
axis (int) – The axis along which the input is unfolded.
size (int) – The size of each slice that is unfolded.
step (int) – The step between each slice.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A unfold Tensor with the same data type as
x
.
Examples
>>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.arange(9, dtype="float64") >>> out = paddle.unfold(x, 0, 2, 4) >>> print(out) Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[0., 1.], [4., 5.]])
-
uniform_
(
min=- 1.0,
max=1.0,
seed=0,
name=None
)
uniform_¶
-
This is the inplace version of OP
uniform
, which returns a Tensor filled with random values sampled from a uniform distribution. The output Tensor will be inplaced with inputx
. Please refer to uniform.- Parameters
-
x (Tensor) – The input tensor to be filled with random values.
min (float|int, optional) – The lower bound on the range of random values to generate,
min
is included in the range. Default is -1.0.max (float|int, optional) – The upper bound on the range of random values to generate,
max
is excluded in the range. Default is 1.0.seed (int, optional) – Random seed used for generating samples. If seed is 0, it will use the seed of the global default generator (which can be set by paddle.seed). Note that if seed is not 0, this operator will always generate the same random numbers every time. Default is 0.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The input tensor x filled with random values sampled from a uniform distribution in the range [
min
,max
). - Return type
-
Tensor
Examples
>>> import paddle >>> # example: >>> x = paddle.ones(shape=[3, 4]) >>> x.uniform_() >>> Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[-0.50484276, 0.49580324, 0.33357990, -0.93924278], [ 0.39779735, 0.87677515, -0.24377221, 0.06212139], [-0.92499518, -0.96244860, 0.79210341, -0.78228098]]) >>>
-
unique
(
return_index=False,
return_inverse=False,
return_counts=False,
axis=None,
dtype='int64',
name=None
)
unique¶
-
Returns the unique elements of x in ascending order.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64, int32, int64.
return_index (bool, optional) – If True, also return the indices of the input tensor that result in the unique Tensor.
return_inverse (bool, optional) – If True, also return the indices for where elements in the original input ended up in the returned unique tensor.
return_counts (bool, optional) – If True, also return the counts for each unique element.
axis (int, optional) – The axis to apply unique. If None, the input will be flattened. Default: None.
dtype (np.dtype|str, optional) – The date type of indices or inverse tensor: int32 or int64. Default: int64.
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
- tuple (out, indices, inverse, counts). out is the unique tensor for x. indices is
-
provided only if return_index is True. inverse is provided only if return_inverse is True. counts is provided only if return_counts is True.
Examples
>>> import paddle >>> x = paddle.to_tensor([2, 3, 3, 1, 5, 3]) >>> unique = paddle.unique(x) >>> print(unique) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 2, 3, 5]) >>> _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True) >>> print(indices) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [3, 0, 1, 4]) >>> print(inverse) Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 2, 2, 0, 3, 2]) >>> print(counts) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 1, 3, 1]) >>> x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]]) >>> unique = paddle.unique(x) >>> print(unique) Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 1, 2, 3]) >>> unique = paddle.unique(x, axis=0) >>> print(unique) Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[2, 1, 3], [3, 0, 1]])
-
unique_consecutive
(
return_inverse=False,
return_counts=False,
axis=None,
dtype='int64',
name=None
)
unique_consecutive¶
-
Eliminates all but the first element from every consecutive group of equivalent elements.
Note
This function is different from unique in the sense that this function only eliminates consecutive duplicate values. This semantics is similar to unique in C++.
- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
return_inverse (bool, optional) – If True, also return the indices for where elements in the original input ended up in the returned unique consecutive tensor. Default is False.
return_counts (bool, optional) – If True, also return the counts for each unique consecutive element. Default is False.
axis (int, optional) – The axis to apply unique consecutive. If None, the input will be flattened. Default is None.
dtype (np.dtype|str, optional) – The data type inverse tensor: int32 or int64. Default: int64.
name (str, optional) – Name for the operation. For more information, please refer to Name. Default is None.
- Returns
-
out (Tensor), the unique consecutive tensor for x.
-
- inverse (Tensor), the element of the input tensor corresponds to
-
the index of the elements in the unique consecutive tensor for x. inverse is provided only if return_inverse is True.
-
- counts (Tensor), the counts of the every unique consecutive element in the input tensor.
-
counts is provided only if return_counts is True.
Examples
>>> import paddle >>> x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2]) >>> output = paddle.unique_consecutive(x) # >>> print(output) Tensor(shape=[5], dtype=int64, place=Place(cpu), stop_gradient=True, [1, 2, 3, 1, 2]) >>> _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True) >>> print(inverse) Tensor(shape=[8], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 0, 1, 1, 2, 3, 3, 4]) >>> print(counts) Tensor(shape=[5], dtype=int64, place=Place(cpu), stop_gradient=True, [2, 2, 1, 2, 1]) >>> x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]]) >>> output = paddle.unique_consecutive(x, axis=0) # >>> print(output) Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[2, 1, 3], [3, 0, 1], [2, 1, 3]]) >>> x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]]) >>> output = paddle.unique_consecutive(x, axis=0) # >>> print(output) Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[2, 1, 3], [3, 0, 1], [2, 1, 3]])
-
unsqueeze
(
axis,
name=None
)
unsqueeze¶
-
Insert single-dimensional entries to the shape of input Tensor
x
. Takes one required argument axis, a dimension or list of dimensions that will be inserted. Dimension indices in axis are as seen in the output tensor.Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode. If you want to use the Tensor copy version, please use Tensor.clone likeunsqueeze_clone_x = x.unsqueeze(-1).clone()
.- Parameters
-
x (Tensor) – The input Tensor to be unsqueezed. Supported data type: bfloat16, float16, float32, float64, bool, int8, int32, int64.
axis (int|list|tuple|Tensor) – Indicates the dimensions to be inserted. The data type is
int32
. Ifaxis
is a list or tuple, each element of it should be integer or 0-D Tensor with shape []. Ifaxis
is a Tensor, it should be an 1-D Tensor . Ifaxis
is negative,axis = axis + ndim(x) + 1
.name (str|None) – Name for this layer. Please refer to Name, Default None.
- Returns
-
Tensor, Unsqueezed Tensor with the same data type as input Tensor.
Examples
>>> import paddle >>> x = paddle.rand([5, 10]) >>> print(x.shape) [5, 10] >>> out1 = paddle.unsqueeze(x, axis=0) >>> print(out1.shape) [1, 5, 10] >>> out2 = paddle.unsqueeze(x, axis=[0, 2]) >>> print(out2.shape) [1, 5, 1, 10] >>> axis = paddle.to_tensor([0, 1, 2]) >>> out3 = paddle.unsqueeze(x, axis=axis) >>> print(out3.shape) [1, 1, 1, 5, 10] >>> # out1, out2, out3 share data with x in dygraph mode >>> x[0, 0] = 10. >>> print(out1[0, 0, 0]) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 10.) >>> print(out2[0, 0, 0, 0]) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 10.) >>> print(out3[0, 0, 0, 0, 0]) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 10.)
-
unsqueeze_
(
axis,
name=None
)
unsqueeze_¶
-
Inplace version of
unsqueeze
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_tensor_unsqueeze.
-
unstack
(
axis=0,
num=None
)
unstack¶
-
This layer unstacks input Tensor
x
into several Tensors alongaxis
.If
axis
< 0, it would be replaced withaxis+rank(x)
. Ifnum
is None, it would be inferred fromx.shape[axis]
, and ifx.shape[axis]
<= 0 or is unknown,ValueError
is raised.- Parameters
-
x (Tensor) – Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64, complex64, complex128.
axis (int) – The axis along which the input is unstacked.
num (int|None) – The number of output variables.
- Returns
-
list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64, complex64, complex128.
Examples
>>> import paddle >>> x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32') # create a tensor with shape=[2, 3, 5] >>> y = paddle.unstack(x, axis=1) # unstack with second axis, which results 3 tensors with shape=[2, 5]
-
vander
(
n=None,
increasing=False,
name=None
)
vander¶
-
Generate a Vandermonde matrix.
The columns of the output matrix are powers of the input vector. Order of the powers is determined by the increasing Boolean parameter. Specifically, when the increment is “false”, the ith output column is a step-up in the order of the elements of the input vector to the N - i - 1 power. Such a matrix with a geometric progression in each row is named after Alexandre-Theophile Vandermonde.
- Parameters
-
x (Tensor) – The input tensor, it must be 1-D Tensor, and it’s data type should be [‘complex64’, ‘complex128’, ‘float32’, ‘float64’, ‘int32’, ‘int64’].
n (int) – Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
increasing (bool) – Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is \(x^{(N-1)}\), the second \(x^{(N-2)}\) and so forth. If increasing is True, the columns are \(x^0\), \(x^1\), …, \(x^{(N-1)}\).
Examples
>>> import paddle >>> x = paddle.to_tensor([1., 2., 3.], dtype="float32") >>> out = paddle.vander(x) >>> out Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 1., 1.], [4., 2., 1.], [9., 3., 1.]]) >>> out1 = paddle.vander(x,2) >>> out1 Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 1.], [2., 1.], [3., 1.]]) >>> out2 = paddle.vander(x, increasing = True) >>> out2 Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 1., 1.], [1., 2., 4.], [1., 3., 9.]]) >>> real = paddle.to_tensor([2., 4.]) >>> imag = paddle.to_tensor([1., 3.]) >>> complex = paddle.complex(real, imag) >>> out3 = paddle.vander(complex) >>> out3 Tensor(shape=[2, 2], dtype=complex64, place=Place(cpu), stop_gradient=True, [[(2+1j), (1+0j)], [(4+3j), (1+0j)]])
-
var
(
axis=None,
unbiased=True,
keepdim=False,
name=None
)
var¶
-
Computes the variance of
x
alongaxis
.- Parameters
-
x (Tensor) – The input Tensor with data type float16, float32, float64.
axis (int|list|tuple, optional) –
The axis along which to perform variance calculations.
axis
should be int, list(int) or tuple(int).If
axis
is a list/tuple of dimension(s), variance is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
.If
axis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) .If
axis
is None, variance is calculated over all elements ofx
. Default is None.
unbiased (bool, optional) – Whether to use the unbiased estimation. If
unbiased
is True, the divisor used in the computation is \(N - 1\), where \(N\) represents the number of elements alongaxis
, otherwise the divisor is \(N\). Default is True.keep_dim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of variance along
axis
ofx
, with the same data type asx
.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) >>> out1 = paddle.var(x) >>> print(out1.numpy()) 2.6666667 >>> out2 = paddle.var(x, axis=1) >>> print(out2.numpy()) [1. 4.3333335]
-
view
(
shape_or_dtype,
name=None
)
view¶
-
View x with specified shape or dtype.
Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode.- Parameters
-
x (Tensor) – An N-D Tensor. The data type is
float32
,float64
,int32
,int64
orbool
shape_or_dtype (list|tuple|np.dtype|str|VarType) – Define the target shape or dtype. If list or tuple, shape_or_dtype represents shape, each element of it should be integer. If np.dtype or str or VarType, shape_or_dtype represents dtype, it can be bool, float16, float32, float64, int8, int32, int64, uint8.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A viewed Tensor with the same data as
x
.
Examples
>>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.view(x, [8, 6]) >>> print(out.shape) [8, 6] >>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.view(x, "uint8") >>> print(out.shape) [2, 4, 24] >>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.view(x, [8, -1]) >>> print(out.shape) [8, 6] >>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.view(x, paddle.uint8) >>> print(out.shape) [2, 4, 24]
-
view_as
(
other,
name=None
)
view_as¶
-
View x with other’s shape.
Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode.- Parameters
-
x (Tensor) – An N-D Tensor. The data type is
float32
,float64
,int32
,int64
orbool
other (Tensor) – The result tensor has the same size as other.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A viewed Tensor with the same shape as
other
.
Examples
>>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> y = paddle.rand([8, 6], dtype="float32") >>> out = paddle.view_as(x, y) >>> print(out.shape) [8, 6]
-
vsplit
(
num_or_indices,
name=None
)
vsplit¶
-
Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to
paddle.tensor_split
withaxis=0
.- Parameters
-
x (Tensor) – A Tensor whose dimension must be greater than 1. The data type is bool, bfloat16, float16, float32, float64, uint8, int32 or int64.
num_or_indices (int|list|tuple) – If
num_or_indices
is an intn
,x
is split inton
sections. Ifnum_or_indices
is a list or tuple of integer indices,x
is split at each of the indices.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
list[Tensor], The list of segmented Tensors.
Examples
>>> import paddle >>> # x is a Tensor of shape [8, 6, 7] >>> x = paddle.rand([8, 6, 7]) >>> out0, out1 = paddle.vsplit(x, num_or_indices=2) >>> print(out0.shape) [4, 6, 7] >>> print(out1.shape) [4, 6, 7] >>> out0, out1, out2 = paddle.vsplit(x, num_or_indices=[1, 4]) >>> print(out0.shape) [1, 6, 7] >>> print(out1.shape) [3, 6, 7] >>> print(out2.shape) [4, 6, 7]
-
where
(
x=None,
y=None,
name=None
)
where¶
-
Return a Tensor of elements selected from either
x
ory
according to corresponding elements ofcondition
. Concretely,\[\begin{split}out_i = \begin{cases} x_i, & \text{if} \ condition_i \ \text{is} \ True \\ y_i, & \text{if} \ condition_i \ \text{is} \ False \\ \end{cases}.\end{split}\]Notes
numpy.where(condition)
is identical topaddle.nonzero(condition, as_tuple=True)
, please refer to nonzero.- Parameters
-
condition (Tensor) – The condition to choose x or y. When True (nonzero), yield x, otherwise yield y.
x (Tensor|scalar, optional) – A Tensor or scalar to choose when the condition is True with data type of bfloat16, float16, float32, float64, int32 or int64. Either both or neither of x and y should be given.
y (Tensor|scalar, optional) – A Tensor or scalar to choose when the condition is False with data type of bfloat16, float16, float32, float64, int32 or int64. Either both or neither of x and y should be given.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
A Tensor with the same shape as
condition
and same data type asx
andy
. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2]) >>> y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0]) >>> out = paddle.where(x>1, x, y) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [1. , 1. , 3.20000005, 1.20000005]) >>> out = paddle.where(x>1) >>> print(out) (Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[2], [3]]),)
-
detach
(
)