Hardsigmoid¶
- class paddle.nn. Hardsigmoid ( name=None ) [source]
-
Hardsigmoid
Activation Layers, Construct a callable object of theHardsigmoid
class. This layer calculate the hardsigmoid of input x.A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391), which is much faster than sigmoid.
\[\begin{split}Hardsigmoid(x)= \left\{ \begin{array}{rcl} 0, & & \text{if } \ x \leq -3 \\ 1, & & \text{if } \ x \geq 3 \\ x/6 + 1/2, & & \text{otherwise} \end{array} \right.\end{split}\]- Parameters
-
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shape:
-
x: N-D tensor, available dtype is float32, float64.
- Returns
-
A callable object of Hardsigmoid.
Examples
>>> import paddle >>> m = paddle.nn.Hardsigmoid() >>> x = paddle.to_tensor([-4., 5., 1.]) >>> out = m(x) >>> print(out) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [0. , 1. , 0.66666669])
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.