Lamb

class paddle.optimizer. Lamb ( learning_rate=0.001, lamb_weight_decay=0.01, beta1=0.9, beta2=0.999, epsilon=1e-06, parameters=None, grad_clip=None, exclude_from_weight_decay_fn=None, multi_precision=False, always_adapt=False, name=None ) [source]

LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

LAMB Optimizer is designed to scale up the batch size of training without losing accuracy, which supports adaptive element-wise updating and accurate layer-wise correction. For more information, please refer to Large Batch Optimization for Deep Learning: Training BERT in 76 minutes .

The updating of parameters follows:

\[ \begin{align}\begin{aligned}m_t &= \beta_1 m_{t - 1}+ (1 - \beta_1)g_t\\v_t &= \beta_2 v_{t - 1} + (1 - \beta_2)g_t^2\\m_t &= \frac{m_t}{\beta_1^t}\\v_t &= \frac{v_t}{\beta_2^t}\\r_t &= \frac{m_t}{\sqrt{v_t}+\epsilon}\\w_t &= w_{t-1} -\eta_t \frac{\left \| w_{t-1}\right \|}{\left \| r_t + \lambda w_{t-1}\right \|} (r_t + \lambda w_{t-1})\end{aligned}\end{align} \]

where \(m\) is the 1st moment, and \(v\) the 2nd moment, \(\\eta\) the learning rate, \(\\lambda\) the LAMB weight decay rate.

Parameters
  • learning_rate (float|Variable, optional) – the learning rate used to update parameters. Can be a float value or a Variable with data type float32. Default 0.001.

  • lamb_weight_decay (float, optional) – The LAMB weight decay rate. Default 0.01. Remind that weight_decay should be None.

  • beta1 (float, optional) – The exponential decay rate for the 1st moment estimates. Default 0.9.

  • beta2 (float, optional) – The exponential decay rate for the 2nd moment estimates. Default 0.999.

  • epsilon (float, optional) – A small float value for numerical stability. Default 1e-6.

  • parameters (Iterable, optional) – Iterable of Variable names to update to minimize loss. This parameter is required in dygraph mode. And you can specify different options for different parameter groups such as the learning rate, weight decay, etc, then the parameters are list of dict. Note that the learning_rate in parameter groups represents the scale of base learning_rate. The default value is None in static graph mode, at this time all parameters will be updated.

  • grad_clip (GradientClipBase, optional) – Gradient clipping strategy, it’s an instance of some derived class of GradientClipBase . There are three clipping strategies ( api_paddle_base_clip_ClipGradByGlobalNorm , api_paddle_base_clip_ClipGradByNorm , api_paddle_base_clip_ClipGradByValue ). If you want better convergence, it is recommended to use api_paddle_base_clip_ClipGradByGlobalNorm . Default None, meaning there is no gradient clipping.

  • exclude_from_weight_decay_fn (function, optional) – whether to skip weight decay for a parameter when this function returns True while take the parameter as input.

  • always_adapt (bool, optional) – whether to use Layer-wise LR adaptation. By default, skip adaptation on parameters that are excluded from weight decay, unless always_adapt == True, then always enable LR adaptation.

  • name (str|None) – For detailed information, please refer to Name . Usually name is no need to set and None by default.

Examples

>>> import paddle

>>> inp = paddle.uniform(shape=[10, 10], dtype='float32', min=-0.1, max=0.1)
>>> linear = paddle.nn.Linear(10, 10)
>>> out = linear(inp)
>>> loss = paddle.mean(out)
>>> beta1 = paddle.to_tensor([0.9], dtype="float32")
>>> beta2 = paddle.to_tensor([0.85], dtype="float32")
>>> lamb = paddle.optimizer.Lamb(learning_rate=0.002, parameters=linear.parameters(), lamb_weight_decay=0.01)
>>> back = out.backward()
>>> lamb.step()
>>> lamb.clear_grad()
append_regularization_ops ( parameters_and_grads, regularization=None )

append_regularization_ops

Create and add backward regularization Operators

Creates and adds backward regularization operators in the BlockDesc. This will add gradients of the regularizer function to the gradients of the parameters and return these modified gradients. This is the same as implementing weight decay in optimizers for regularization.

Parameters
  • parameters_and_grads – A list of (parameters, gradients) pairs that need to be regularized.

  • regularization – A global regularizer. If the parameter is not set. It will be applied with regularizer.

Returns

list of (parameters, gradients) pair with the regularized gradient

Return type

list[(Variable, Variable)]

Raises

Exception – Unknown regularization type

clear_grad ( set_to_zero=True )

clear_grad

Clear the gradients of all optimized parameters for model.

If not, new gradient will accumulat on previous gradient.

There are two method to clear grad: set_to_zero or delete grad.

Parameters

set_to_zero (bool, optional) – If set grads to zero or not, default is True.

Returns

None

Examples

>>> import paddle

>>> a = paddle.arange(26, dtype="float32").reshape([2, 13])
>>> linear = paddle.nn.Linear(13, 5)
>>> # This can be any optimizer supported by dygraph.
>>> adam = paddle.optimizer.Adam(learning_rate = 0.01,
...                             parameters = linear.parameters())
>>> out = linear(a)
>>> out.backward()
>>> adam.step()
>>> adam.clear_grad()
get_lr ( )

get_lr

Get current learning rate of optimizer. If ‘LRScheduler’ is not used, the return value is all the same. If ‘LRScheduler’ is used, the return value is the current scheduled learing rete.

Returns

The current learning rate of optimizer.

Return type

float

Examples

>>> # train on default dynamic graph mode
>>> import paddle
>>> import numpy as np
>>> emb = paddle.nn.Embedding(10, 3)

>>> ## example1: LRScheduler is not used, return the same value is all the same
>>> adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
>>> for batch in range(10):
...     input = paddle.randint(low=0, high=5, shape=[5])
...     out = emb(input)
...     out.backward()
...     print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
...     adam.step()
Learning rate of step0: 0.01
Learning rate of step1: 0.01
Learning rate of step2: 0.01
Learning rate of step3: 0.01
Learning rate of step4: 0.01
Learning rate of step5: 0.01
Learning rate of step6: 0.01
Learning rate of step7: 0.01
Learning rate of step8: 0.01
Learning rate of step9: 0.01

>>> ## example2: StepDecay is used, return the scheduled learning rate
>>> scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
>>> adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
>>> for batch in range(10):
...     input = paddle.randint(low=0, high=5, shape=[5])
...     out = emb(input)
...     out.backward()
...     print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
...     adam.step()
...     scheduler.step()
Learning rate of step0: 0.5
Learning rate of step1: 0.5
Learning rate of step2: 0.05
Learning rate of step3: 0.05
Learning rate of step4: 0.005000000000000001
Learning rate of step5: 0.005000000000000001
Learning rate of step6: 0.0005000000000000001
Learning rate of step7: 0.0005000000000000001
Learning rate of step8: 5.000000000000001e-05
Learning rate of step9: 5.000000000000001e-05

>>> # train on static graph mode
>>> paddle.enable_static()
>>> main_prog = paddle.static.Program()
>>> start_prog = paddle.static.Program()
>>> with paddle.static.program_guard(main_prog, start_prog):
...     x = paddle.static.data(name='x', shape=[None, 10])
...     z = paddle.static.nn.fc(x, 100)
...     loss = paddle.mean(z)
...     scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
...     adam = paddle.optimizer.Adam(learning_rate=scheduler)
...     adam.minimize(loss)

>>> exe = paddle.static.Executor()
>>> exe.run(start_prog)
>>> for batch in range(10):
...     print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05->0.005...
...     out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
...     scheduler.step()
Learning rate of step0: 0.5
Learning rate of step1: 0.5
Learning rate of step2: 0.05
Learning rate of step3: 0.05
Learning rate of step4: 0.005000000000000001
Learning rate of step5: 0.005000000000000001
Learning rate of step6: 0.0005000000000000001
Learning rate of step7: 0.0005000000000000001
Learning rate of step8: 5.000000000000001e-05
Learning rate of step9: 5.000000000000001e-05
minimize ( loss, startup_program=None, parameters=None, no_grad_set=None )

minimize

Add operations to minimize loss by updating parameters.

Parameters
  • loss (Tensor) – A Tensor containing the value to minimize.

  • startup_program (Program, optional) – Program for initializing parameters in parameters. The default value is None, at this time default_startup_program will be used.

  • parameters (list, optional) – List of Tensor or Tensor.name to update to minimize loss. The default value is None, at this time all parameters will be updated.

  • no_grad_set (set, optional) – Set of Tensor or Tensor.name that don’t need to be updated. The default value is None.

Returns

tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) tensor pairs, param is Parameter, grad is the gradient value corresponding to the parameter. In static graph mode, the returned tuple can be passed to fetch_list in Executor.run() to indicate program pruning. If so, the program will be pruned by feed and fetch_list before run, see details in Executor.

Return type

tuple

Examples

>>> import paddle
>>> linear = paddle.nn.Linear(10, 10)
>>> input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
>>> out = linear(input)
>>> loss = paddle.mean(out)

>>> beta1 = paddle.to_tensor([0.9], dtype="float32")
>>> beta2 = paddle.to_tensor([0.99], dtype="float32")

>>> adam = paddle.optimizer.Adam(learning_rate=0.1,
...         parameters=linear.parameters(),
...         weight_decay=0.01)
>>> loss.backward()
>>> adam.minimize(loss)
>>> adam.clear_grad()
set_lr ( value )

set_lr

Api_attr

imperative

Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler, this API cannot be invoked, because it will lead to conflict.

Parameters

value (float) – the value of learning rate

Returns

None

Examples

>>> import paddle
>>> linear = paddle.nn.Linear(10, 10)

>>> adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

>>> # set learning rate manually by python float value
>>> lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
>>> for i in range(5):
...     adam.set_lr(lr_list[i])
...     lr = adam.get_lr()
...     print("current lr is {}".format(lr))
current lr is 0.2
current lr is 0.3
current lr is 0.4
current lr is 0.5
current lr is 0.6
set_lr_scheduler ( scheduler )

set_lr_scheduler

Api_attr

imperative

Set the LRScheduler of the learning rate manually in the optimizer. If the optimizer already used LRScheduler previously, this API will set it be the new one.

Parameters

scheduler (LRScheduler) – the LRScheduler of learning rate

Returns

None

Examples

>>> import paddle
>>> linear = paddle.nn.Linear(10, 10)

>>> adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

>>> # set learning rate manually by class LRScheduler
>>> scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2,4,6], gamma=0.8)
>>> adam.set_lr_scheduler(scheduler)
>>> lr = adam.get_lr()
>>> print("current lr is {}".format(lr))
current lr is 0.5

>>> # set learning rate manually by another LRScheduler
>>> scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.1, step_size=5, gamma=0.6)
>>> adam.set_lr_scheduler(scheduler)
>>> lr = adam.get_lr()
>>> print("current lr is {}".format(lr))
current lr is 0.1
set_state_dict ( state_dict )

set_state_dict

Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.

Parameters

state_dict (dict) – Dict contains all the Tensor needed by optimizer

Returns

None

Examples

>>> import paddle

>>> emb = paddle.nn.Embedding(10, 10)

>>> layer_state_dict = emb.state_dict()
>>> paddle.save(layer_state_dict, "emb.pdparams")

>>> scheduler = paddle.optimizer.lr.NoamDecay(
...     d_model=0.01, warmup_steps=100, verbose=True)
>>> adam = paddle.optimizer.Adam(
...     learning_rate=scheduler,
...     parameters=emb.parameters())
>>> opt_state_dict = adam.state_dict()
>>> paddle.save(opt_state_dict, "adam.pdopt")

>>> opti_state_dict = paddle.load("adam.pdopt")
>>> adam.set_state_dict(opti_state_dict)
state_dict ( )

state_dict

Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict. If the optimizer never be called(minimize function), the state_dict is empty.

Parameters

None

Returns

dict contains all the Tensor used by optimizer

Return type

state_dict(dict)

Examples

>>> import paddle
>>> emb = paddle.nn.Embedding(10, 10)

>>> adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
>>> state_dict = adam.state_dict()
step ( )

step

Execute the optimizer and update parameters once.

Returns

None

Examples

>>> import paddle

>>> a = paddle.arange(26, dtype="float32").reshape([2, 13])
>>> linear = paddle.nn.Linear(13, 5)
>>> # This can be any optimizer supported by dygraph.
>>> adam = paddle.optimizer.Adam(learning_rate = 0.01,
...                         parameters = linear.parameters())
>>> out = linear(a)
>>> out.backward()
>>> adam.step()
>>> adam.clear_grad()