StudentT¶
- class paddle.distribution. StudentT ( df: float | Tensor, loc: float | Tensor, scale: float | Tensor, name: str | None = None ) [source]
-
The StudentT distribution with parameters: df, loc, scale.
In probability theory and statistics, the StudentT distribution is one of the basic continuous probability distributions defined on the real number set.
The probability density function (pdf) is
\[pdf(x; \nu, \mu, \sigma) = \frac{\Gamma[(\nu+1)/2]}{\sigma\sqrt{\nu\pi}\Gamma(\nu/2)[1+(\frac{x-\mu}{\sigma})^2/\nu]^{(1+\nu)/2}}\]In the above equation:
\(df = \nu\): is the degree of freedom.
\(loc = \mu\): is the center parameter.
\(scale = \sigma\): is the scale parameter.
\(\Gamma(\cdot)\): is the gamma function.
- Parameters
-
df (float|Tensor) – The degree of freedom of the distribution, which should be non-negative. If the input data type is float, the data type of df will be converted to a 1-D Tensor with paddle global default dtype. Supported dtype: float32, float64.
loc (float|Tensor) – The center of the distribution. If the input data type is float, the data type of loc will be converted to a 1-D Tensor with paddle global default dtype. Supported dtype: float32, float64.
scale (float|Tensor) – The scale of the distribution, which should be non-negative. If the input data type is float, the data type of scale will be converted to a 1-D Tensor with paddle global default dtype. Supported dtype: float32, float64.
name (str|None, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
Examples
>>> import paddle >>> from paddle.distribution import StudentT >>> paddle.set_device('cpu') >>> paddle.seed(100) >>> dist = StudentT(df=10.0, loc=0.0, scale=1.0) >>> dist.sample([3]) Tensor(shape=[3, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[-2.07709980], [ 0.27981189], [ 0.00881413]]) >>> dist2 = StudentT(df=paddle.to_tensor([10.0, 5.0]), loc=paddle.to_tensor([0.0, 0.0]), scale=paddle.to_tensor([1.0, 2.0])) >>> value_tensor = paddle.to_tensor([0.8], dtype="float32") >>> lp = dist2.log_prob(value_tensor) >>> print(lp) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [-1.28509235, -1.75626254]) >>> p = dist2.prob(value_tensor) >>> print(p) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [0.27662504, 0.17268908]) >>> entropy = dist2.entropy() >>> print(entropy) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [1.52126312, 2.32064891])
- property mean : Tensor
-
Mean of StudentT distribution.
- Returns
-
mean value.
- Return type
-
Tensor
- property variance : Tensor
-
Variance of StudentT distribution.
- Returns
-
variance value.
- Return type
-
Tensor
- property batch_shape : Sequence[int]
-
Returns batch shape of distribution
- Returns
-
batch shape
- Return type
-
Sequence[int]
- property event_shape : Sequence[int]
-
Returns event shape of distribution
- Returns
-
event shape
- Return type
-
Sequence[int]
-
kl_divergence
(
other: Distribution
)
Tensor
[source]
kl_divergence¶
-
The KL-divergence between self distributions and other.
-
probs
(
value: Tensor
)
Tensor
probs¶
-
Probability density/mass function.
Note
This method will be deprecated in the future, please use prob instead.
-
rsample
(
shape: Sequence[int] = []
)
Tensor
rsample¶
-
reparameterized sample
-
sample
(
shape: Sequence[int] = []
)
Tensor
sample¶
-
Generate StudentT samples of the specified shape. The final shape would be
shape+batch_shape
.- Parameters
-
shape (Sequence[int], optional) – Prepended shape of the generated samples.
- Returns
-
Sampled data with shape sample_shape + batch_shape.
- Return type
-
Tensor
-
entropy
(
)
Tensor
entropy¶
-
Shannon entropy in nats.
The entropy is
\[H = \log(\frac{\Gamma(\nu/2)\Gamma(1/2) \sigma \sqrt{\nu}}{\Gamma[(1+\nu)/2]}) + \frac{(1+\nu)}{2} \cdot \{\psi[(1+\nu)/2] - \psi(\nu/2)\}\]In the above equation:
\(\nu\): is the degree of freedom.
\(\Gamma()\): is the gamma function.
\(\psi()\): is the digamma function.
- Returns
-
Shannon entropy of StudentT distribution. The data type is the same as df.
- Return type
-
Tensor
-
log_prob
(
value: Tensor
)
Tensor
log_prob¶
-
Log probability density function.
- Parameters
-
value (Tensor) – The input tensor.
- Returns
-
log probability density. The data type is the same as df.
- Return type
-
Tensor
-
prob
(
value: Tensor
)
Tensor
prob¶
-
Probability density function.
- Parameters
-
value (Tensor) – The input tensor.
- Returns
-
probability density. The data type is the same as df.
- Return type
-
Tensor