TransformedDistribution¶
- class paddle.distribution. TransformedDistribution ( base, transforms ) [source]
-
Applies a sequence of Transforms to a base distribution.
- Parameters
-
base (Distribution) – The base distribution.
transforms (Sequence[Transform]) – A sequence of
Transform
.
Examples
>>> import paddle >>> paddle.seed(2023) >>> from paddle.distribution import transformed_distribution >>> d = transformed_distribution.TransformedDistribution( ... paddle.distribution.Normal(0., 1.), ... [paddle.distribution.AffineTransform(paddle.to_tensor(1.), paddle.to_tensor(2.))] ... ) >>> >>> print(d.sample([10])) Tensor(shape=[10], dtype=float32, place=Place(cpu), stop_gradient=True, [ 3.22699189, 1.12264419, 0.50283587, 1.83812487, -2.00740123, -2.70338631, 1.26663208, 4.47909021, -0.11529565, 4.32719326]) >>> print(d.log_prob(paddle.to_tensor(0.5))) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, -1.64333570) >>>
-
sample
(
shape=()
)
sample¶
-
Sample from
TransformedDistribution
.- Parameters
-
shape (Sequence[int], optional) – The sample shape. Defaults to ().
- Returns
-
The sample result.
- Return type
-
[Tensor]
-
rsample
(
shape=()
)
rsample¶
-
Reparameterized sample from
TransformedDistribution
.- Parameters
-
shape (Sequence[int], optional) – The sample shape. Defaults to ().
- Returns
-
The sample result.
- Return type
-
[Tensor]
-
log_prob
(
value
)
log_prob¶
-
The log probability evaluated at value.
- Parameters
-
value (Tensor) – The value to be evaluated.
- Returns
-
The log probability.
- Return type
-
Tensor
- property batch_shape
-
Returns batch shape of distribution
- Returns
-
batch shape
- Return type
-
Sequence[int]
-
entropy
(
)
entropy¶
-
The entropy of the distribution.
- property event_shape
-
Returns event shape of distribution
- Returns
-
event shape
- Return type
-
Sequence[int]
-
kl_divergence
(
other
)
[source]
kl_divergence¶
-
The KL-divergence between self distributions and other.
- property mean
-
Mean of distribution
-
prob
(
value
)
prob¶
-
Probability density/mass function evaluated at value.
- Parameters
-
value (Tensor) – value which will be evaluated
-
probs
(
value
)
probs¶
-
Probability density/mass function.
Note
This method will be deprecated in the future, please use prob instead.
- property variance
-
Variance of distribution