flash_attn_qkvpacked¶
- paddle.nn.functional. flash_attn_qkvpacked ( qkv, dropout=0.0, causal=False, return_softmax=False, *, fixed_seed_offset=None, rng_name='', training=True, name=None ) [source]
-
The equation is:
\[result=softmax(\frac{ Q * K^T }{\sqrt{d}}) * V\]where :
Q
,K
, andV
represent the three input parameters of the attention module. The dimensions of the three parameters are the same.d
represents the size of the last dimension of the three parameters.Warning
This API only supports inputs with dtype float16 and bfloat16. Don’t call this API if flash_attn is not supported.
- Parameters
-
qkv (Tensor) – The query/key/value packed tensor in the Attention module. 5-D tensor with shape: [batchsize, seqlen , num_heads/num_heads_k + 2, num_heads_k, head_dim]. The dtype can be float16 or bfloat16.
dropout (float) – The dropout ratio.
causal (bool) – Whether enable causal mode.
return_softmax (bool) – Whether to return softmax.
fixed_seed_offset (Tensor, optional) – With fixed seed, offset for dropout mask.
training (bool) – Whether it is in the training phase.
rng_name (str) – The name to select Generator.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
[batch_size, seq_len, num_heads, head_dim]. The dtype can be float16 or bfloat16. - softmax(Tensor). The softmax tensor. None if return_softmax is False.
- Return type
-
out(Tensor). The attention tensor. 4-D tensor with shape
Examples
>>> >>> import paddle >>> paddle.seed(2023) >>> q = paddle.rand((1, 128, 2, 16)) >>> qkv = paddle.stack([q, q, q], axis=2) >>> output = paddle.nn.functional.flash_attn_qkvpacked(qkv, 0.9, False, False) >>> print(output) (Tensor(shape=[1, 128, 2, 16], dtype=float32, place=Place(cpu), stop_gradient=True, [[[[0.34992966, 0.34456208, 0.45826620, ..., 0.39883569, 0.42132431, 0.39157745], [0.76687670, 0.65837246, 0.69117945, ..., 0.82817286, 0.76690865, 0.71485823]], ..., [[0.71662450, 0.57275224, 0.57053083, ..., 0.48108247, 0.53336465, 0.54540104], [0.59137970, 0.51350880, 0.50449550, ..., 0.38860250, 0.40526697, 0.60541755]]]]), None) >>>