Softshrink¶
- class paddle.nn. Softshrink ( threshold=0.5, name=None ) [source]
-
Softshrink Activation
\[\begin{split}Softshrink(x)= \left\{ \begin{array}{rcl} x - threshold,& & \text{if } x > threshold \\ x + threshold,& & \text{if } x < -threshold \\ 0,& & \text{otherwise} \end{array} \right.\end{split}\]- Parameters
-
threshold (float, optional) – The value of threshold(must be no less than zero) for softplus. Default is 0.5
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shape:
-
input: Tensor with any shape.
output: Tensor with the same shape as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8]) >>> m = paddle.nn.Softshrink() >>> out = m(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [-0.39999998, 0. , 0. , 0.30000001])
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.