cummin¶
- paddle. cummin ( x, axis=None, dtype='int64', name=None ) [source]
-
The cumulative min of the elements along a given axis.
Note
The first element of the result is the same as the first element of the input.
- Parameters
-
x (Tensor) – The input tensor needed to be cummined.
axis (int, optional) – The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
dtype (str, optional) – The data type of the indices tensor, can be int32, int64. The default value is int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.
indices (Tensor), The corresponding index results of cummin operation.
Examples
>>> import paddle >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2]) >>> data = paddle.reshape(data, (2, 3)) >>> value, indices = paddle.cummin(data) >>> value Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [-1, -1, -1, -2, -3, -3]) >>> indices Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 0, 0, 3, 4, 4]) >>> value, indices = paddle.cummin(data, axis=0) >>> value Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[-1, 5, 0], [-2, -3, 0]]) >>> indices Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0], [1, 1, 0]]) >>> value, indices = paddle.cummin(data, axis=-1) >>> value Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[-1, -1, -1], [-2, -3, -3]]) >>> indices Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0], [0, 1, 1]]) >>> value, indices = paddle.cummin(data, dtype='int64') >>> assert indices.dtype == paddle.int64