ShuffleNetV2¶
- class paddle.vision.models. ShuffleNetV2 ( scale=1.0, act='relu', num_classes=1000, with_pool=True ) [source]
-
ShuffleNetV2 model from “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design”.
- Parameters
-
scale (float, optional) – Scale of output channels. Default: True.
act (str, optional) – Activation function of neural network. Default: “relu”.
num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000.
with_pool (bool, optional) – Use pool before the last fc layer or not. Default: True.
- Returns
-
Layer. An instance of ShuffleNetV2 model.
Examples
>>> import paddle >>> from paddle.vision.models import ShuffleNetV2 >>> shufflenet_v2_swish = ShuffleNetV2(scale=1.0, act="swish") >>> x = paddle.rand([1, 3, 224, 224]) >>> out = shufflenet_v2_swish(x) >>> print(out.shape) [1, 1000]
-
forward
(
inputs
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments