recompute¶
- paddle.distributed.fleet.utils. recompute ( function, *args, **kwargs ) [source]
-
recompute intermediate activations to save the memory.
- Parameters
-
function (paddle.nn.Layer) – layer of sequence of layers that describes part of forward pass of the model whose intermediate activations will be released to save memory in forward stage and will be recomputed in backward stage for gradient calculation.
*args (Tensor) – inputs to the function.
**kwargs (Dict) – Kwargs should only contain two kinds of key-value params, the one is part of function’s key-value params, and the other contains
preserve_rng_state
anduse_reentrant
. the key-value pair ofpreserve_rng_state
, which is used to indicate whether to save the forward rng. If it is True, then the last forward rng value will be restored when the forward recalculation of backpropagation is performed, its default value is True. the key-value pair ofuse_reentrant
is used to indicate which implementation of recompute you will be used.use_reentrant=True
means to use the PyLayer implementation of recompute,use_reentrant=False
means to use the Hook implementation of recompute, its default value is True.
- Returns
-
Output of function on args.
Examples
>>> >>> import paddle >>> from paddle.distributed.fleet.utils import recompute >>> import random >>> paddle.seed(2023) >>> def get_fc_block(block_idx, input_size, is_last=False): ... block_name = "block_" + str(block_idx) ... block = paddle.nn.Sequential( ... (block_name + "_fc_0", paddle.nn.Linear(input_size, input_size, bias_attr=False)), ... (block_name + "_dropout", paddle.nn.Dropout(p=0.5)), ... (block_name + "_relu_1", paddle.nn.ReLU()), ... (block_name + "_fc_1", paddle.nn.Linear(input_size, input_size, bias_attr=False)), ... (block_name + "_relu_2", paddle.nn.ReLU()), ... ) ... if is_last: ... block.add_sublayer( ... block_name + "_fc_2", ... paddle.nn.Linear( ... input_size, 1, bias_attr=False ... ) ... ) ... else: ... block.add_sublayer( ... block_name + "_fc_2", ... paddle.nn.Linear(input_size, input_size, bias_attr=False) ... ) ... return block >>> class Naive_fc_net(paddle.nn.Layer): ... def __init__(self, input_size=10, ... recompute_blocks=[1, 3], ... recompute_kwargs={}): ... super().__init__() ... self.recompute_blocks = recompute_blocks ... self.recompute_kwargs = recompute_kwargs ... self.runfunc0 = get_fc_block(0, input_size, is_last=False) ... self.runfunc1 = get_fc_block(1, input_size, is_last=False) ... self.runfunc2 = get_fc_block(2, input_size, is_last=False) ... self.runfunc3 = get_fc_block(3, input_size, is_last=False) ... self.runfunc4 = get_fc_block(4, input_size, is_last=True) ... self.total_func = [self.runfunc0, self.runfunc1, self.runfunc2, self.runfunc3, self.runfunc4] ... def forward(self, inputs): ... nums = len(self.total_func) ... for i in range(nums): ... if i in self.recompute_blocks: ... inputs = recompute(self.total_func[i], inputs, **{"preserve_rng_state": True}) ... else: ... inputs = self.total_func[i](inputs) ... return inputs >>> def run_model(cuda_state, recompute_block=[], recompute_kwargs={}): ... gen = paddle.seed(10) ... gen.manual_seed(10) ... random.seed(10) ... if cuda_state: ... paddle.set_cuda_rng_state(cuda_state) ... batch_size, input_size = 1, 10 ... model = Naive_fc_net( ... input_size, ... recompute_blocks=recompute_block, ... recompute_kwargs=recompute_kwargs) ... optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) ... loss_ = [] ... param_ = [] ... grad_ = [] ... for _ in range(5): ... x = paddle.rand(shape=[batch_size, input_size], dtype="float32") ... y_pred = model(x) ... loss = y_pred.mean() ... loss_.append(loss.item()) ... loss.backward() ... optimizer.step() ... param_.append(model.parameters()[9]) ... grad_.append(model.parameters()[3]._grad_ivar()) ... optimizer.clear_grad() ... return loss_, param_, grad_ >>> cuda_state = paddle.get_cuda_rng_state() >>> # without recompute >>> loss_ref, param_ref, grad_ref = run_model( ... cuda_state, recompute_block=[] ... ) >>> loss, param, grad = run_model(cuda_state, recompute_block=[1, 2]) >>> print("normal_loss: {}, recompute_loss: {}".format(loss_ref, loss)) >>> # The result of the recompute_loss should be the same as the normal_loss. normal_loss: [0.0018744759727269411, 0.0, 0.035971127450466156, 0.0, 0.0], recompute_loss: [0.0018744759727269411, 0.0, 0.035971127450466156, 0.0, 0.0]