Softplus¶
- class paddle.nn. Softplus ( beta=1, threshold=20, name=None ) [source]
-
Softplus Activation
\[\begin{split}softplus(x)=\begin{cases} \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\ x,&x>\frac{\varepsilon}{\beta}. \end{cases}\end{split}\]- Parameters
-
beta (float, optional) – The value of \(\beta\) for Softplus. Default is 1
threshold (float, optional) – The value of \(\varepsilon\) for Softplus. Default is 20
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Shape:
-
input: Tensor with any shape.
output: Tensor with the same shape as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32') >>> m = paddle.nn.Softplus() >>> out = m(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.51301527, 0.59813893, 0.74439669, 0.85435522])
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.