bernoulli¶
- paddle. bernoulli ( x, name=None ) [source]
-
For each element \(x_i\) in input
x
, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability \(x_i\). The Bernoulli distribution with success probability \(x_i\) is a discrete probability distribution with probability mass function\[\begin{split}p(y)=\begin{cases} x_i,&y=1\\ 1-x_i,&y=0 \end{cases}.\end{split}\]- Parameters
-
x (Tensor) – The input Tensor, it’s data type should be float32, float64.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as
x
. - Return type
-
Tensor
Examples
>>> import paddle >>> paddle.set_device('cpu') # on CPU device >>> paddle.seed(100) >>> x = paddle.rand([2,3]) >>> print(x) >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.55355281, 0.20714243, 0.01162981], [0.51577556, 0.36369765, 0.26091650]]) >>> >>> out = paddle.bernoulli(x) >>> print(out) >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 0., 1.], [0., 1., 0.]]) >>>