bernoulli¶
- paddle. bernoulli ( x: Tensor, p: float | None = None, name: str | None = None ) Tensor [source]
-
For each element \(x_i\) in input
x
, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability \(x_i\). The Bernoulli distribution with success probability \(x_i\) is a discrete probability distribution with probability mass function\[\begin{split}p(y)=\begin{cases} x_i,&y=1\\ 1-x_i,&y=0 \end{cases}.\end{split}\]- Parameters
-
x (Tensor) – The input Tensor, it’s data type should be float32, float64.
p (float|None, optional) – If
p
is given, the success probability will always bep
. Default is None, which means to use the success probability specified by inputx
.name (str|None, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as
x
.
Examples
>>> import paddle >>> paddle.set_device('cpu') # on CPU device >>> paddle.seed(100) >>> x = paddle.rand([2,3]) >>> print(x) >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.55355281, 0.20714243, 0.01162981], [0.51577556, 0.36369765, 0.26091650]]) >>> >>> out = paddle.bernoulli(x) >>> print(out) >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 0., 1.], [0., 1., 0.]]) >>> >>> out = paddle.bernoulli(x, p=0) >>> print(out) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 0., 0.], [0., 0., 0.]])