margin_ranking_loss¶
- paddle.nn.functional. margin_ranking_loss ( input, other, label, margin=0.0, reduction='mean', name=None ) [source]
-
Calculate the margin rank loss between the input, other and label, use the math function as follows.
\[margin\_rank\_loss = max(0, -label * (input - other) + margin)\]If
reduction
set to'mean'
, the reduced mean loss is:\[Out = MEAN(margin\_rank\_loss)\]If
reduction
set to'sum'
, the reduced sum loss is:\[Out = SUM(margin\_rank\_loss)\]If
reduction
set to'none'
, just return the originmargin_rank_loss
.- Parameters
-
input (Tensor) – the first input tensor, it’s data type should be float32, float64.
other (Tensor) – the second input tensor, it’s data type should be float32, float64.
label (Tensor) – the label value corresponding to input, it’s data type should be float32, float64.
margin (float, optional) – The margin value to add, default value is 0;
reduction (str, optional) – Indicate the reduction to apply to the loss, the candidates are
'none'
,'mean'
,'sum'
.Ifreduction
is'none'
, the unreduced loss is returned; Ifreduction
is'mean'
, the reduced mean loss is returned. Ifreduction
is'sum'
, the reduced sum loss is returned. Default is'mean'
.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, if
reduction
is'mean'
or'sum'
, the out shape is \([]\), otherwise the shape is the same as input .The same dtype as input tensor.
Examples
>>> import paddle >>> input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32') >>> other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32') >>> label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32') >>> loss = paddle.nn.functional.margin_ranking_loss(input, other, label) >>> print(loss) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.75000000)