StackTransform¶
- class paddle.distribution. StackTransform ( transforms, axis=0 ) [source]
-
StackTransform
applies a sequence of transformations along the specific axis.- Parameters
-
transforms (Sequence[Transform]) – The sequence of transformations.
axis (int, optional) – The axis along which will be transformed. default value is 0.
Examples
>>> import paddle >>> x = paddle.stack( ... (paddle.to_tensor([1., 2., 3.]), paddle.to_tensor([1, 2., 3.])), 1) >>> t = paddle.distribution.StackTransform( ... (paddle.distribution.ExpTransform(), ... paddle.distribution.PowerTransform(paddle.to_tensor(2.))), ... 1 >>> ) >>> print(t.forward(x)) Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[2.71828175 , 1. ], [7.38905621 , 4. ], [20.08553696, 9. ]]) >>> print(t.inverse(t.forward(x))) Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 1.], [2., 2.], [3., 3.]]) >>> print(t.forward_log_det_jacobian(x)) Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[1. , 0.69314718], [2. , 1.38629436], [3. , 1.79175949]])
-
forward
(
x
)
forward¶
-
Forward transformation with mapping \(y = f(x)\).
Useful for turning one random outcome into another.
- Parameters
-
x (Tensor) – Input parameter, generally is a sample generated from
Distribution
. - Returns
-
Outcome of forward transformation.
- Return type
-
Tensor
-
forward_log_det_jacobian
(
x
)
forward_log_det_jacobian¶
-
The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function.
- Parameters
-
x (Tensor) – Input tensor, generally is a sample generated from
Distribution
- Returns
-
The log of the absolute value of Jacobian determinant.
- Return type
-
Tensor
-
forward_shape
(
shape
)
forward_shape¶
-
Infer the shape of forward transformation.
- Parameters
-
shape (Sequence[int]) – The input shape.
- Returns
-
The output shape.
- Return type
-
Sequence[int]
-
inverse
(
y
)
inverse¶
-
Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another.
- Parameters
-
y (Tensor) – Input parameter for inverse transformation.
- Returns
-
Outcome of inverse transform.
- Return type
-
Tensor
-
inverse_log_det_jacobian
(
y
)
inverse_log_det_jacobian¶
-
Compute \(log|det J_{f^{-1}}(y)|\). Note that
forward_log_det_jacobian
is the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
-
y (Tensor) – The input to the
inverse
Jacobian determinant evaluation. - Returns
-
The value of \(log|det J_{f^{-1}}(y)|\).
- Return type
-
Tensor
-
inverse_shape
(
shape
)
inverse_shape¶
-
Infer the shape of inverse transformation.
- Parameters
-
shape (Sequence[int]) – The input shape of inverse transformation.
- Returns
-
The output shape of inverse transformation.
- Return type
-
Sequence[int]