Program¶
- class paddle.static. Program
-
Create Python Program. Program is an abstraction of model structure, divided into computational graphs and weights. The Program has a main block that stores the computational graphs.
A set of Program usually contains startup program and main program. A startup program is set to contain some initial work, eg. initialize the
Parameter
, and the main program will contain the network structure and vars for train.A set of Program can be used for test or train, in train program , Paddle will contain all content to build a train network, in test program Paddle will prune some content which is irrelevant to test, eg. backward ops and vars.
- Notes:
-
we have default_startup_program and default_main_program by default, a pair of them will shared the parameters. The default_startup_program only run once to initialize parameters, default_main_program run in every mini batch and adjust the weights.
- Returns
-
An empty Program.
- Return type
-
Program
Examples
>>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> main_program = static.Program() >>> startup_program = static.Program() >>> with static.program_guard(main_program=main_program, startup_program=startup_program): ... x = static.data(name="x", shape=[-1, 784], dtype='float32') ... y = static.data(name="y", shape=[-1, 1], dtype='int32') ... z = static.nn.fc(name="fc", x=x, size=10, activation="relu") >>> print("main program is: {}".format(main_program)) >>> print("start up program is: {}".format(startup_program))
-
clone
(
*args,
**kwargs
)
clone¶
-
Overloaded function.
clone(self: paddle.base.libpaddle.pir.Program) -> object
clone(self: paddle.base.libpaddle.pir.Program, arg0: pir::IrMapping) -> object
-
copy_to_block
(
self: paddle.base.libpaddle.pir.Program,
arg0: pir::IrMapping,
arg1: pir::Block
)
None
copy_to_block¶
-
get_all_parameter_values
(
self: paddle.base.libpaddle.pir.Program
)
dict[str, pir::Value]
get_all_parameter_values¶
-
get_output_value_by_name
(
self: paddle.base.libpaddle.pir.Program,
arg0: str
)
pir::Value
get_output_value_by_name¶
-
get_parameter_value_by_name
(
self: paddle.base.libpaddle.pir.Program,
arg0: str
)
pir::Value
get_parameter_value_by_name¶
-
get_value_by_op_id
(
self: paddle.base.libpaddle.pir.Program,
arg0: object
)
list[pir::Value]
get_value_by_op_id¶
-
global_block
(
*args,
**kwargs
)
global_block¶
-
Overloaded function.
global_block(self: paddle.base.libpaddle.pir.Program) -> pir::Block
global_block(self: paddle.base.libpaddle.pir.Program) -> pir::Block
-
global_seed
(
self: paddle.base.libpaddle.pir.Program,
arg0: int
)
None
global_seed¶
-
list_vars
(
self: paddle.base.libpaddle.pir.Program
)
list[pir::Value]
list_vars¶
-
num_ops
(
self: paddle.base.libpaddle.pir.Program
)
int
num_ops¶
-
parameters_num
(
self: paddle.base.libpaddle.pir.Program
)
int
parameters_num¶
-
set_is_test_attr
(
self: paddle.base.libpaddle.pir.Program
)
None
set_is_test_attr¶
-
set_parameters_from
(
self: paddle.base.libpaddle.pir.Program,
arg0: paddle.base.libpaddle.pir.Program
)
None
set_parameters_from¶
-
set_state_dict
(
self: paddle.base.libpaddle.pir.Program,
state_dict: dict[str, paddle.base.libpaddle.DenseTensor],
scope: paddle.base.libpaddle._Scope,
copy_tensor: bool = False
)
None
set_state_dict¶