corrcoef¶
- paddle.linalg. corrcoef ( x, rowvar=True, name=None ) [source]
-
A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix. For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.
The relationship between the correlation coefficient matrix R and the covariance matrix C, is
\[R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }\]The values of R are between -1 and 1.
- Parameters
-
x (Tensor) – A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
rowvar (bool, optional) – If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
name (str, optional) – Name of the output. It’s used to print debug info for developers. Details: Name. Default: None.
- Returns
-
The correlation coefficient matrix of the variables.
Examples
>>> import paddle >>> paddle.seed(2023) >>> xt = paddle.rand((3,4)) >>> print(paddle.linalg.corrcoef(xt)) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.99999988, -0.47689581, -0.89559376], [-0.47689593, 1. , 0.16345492], [-0.89559382, 0.16345496, 1. ]])