Chi2¶
- class paddle.distribution. Chi2 ( df: float | Tensor ) [source]
-
Creates a Chi-squared distribution parameterized by shape parameter. This is exactly equivalent to Gamma(concentration=0.5*df, rate=0.5), Gamma.
- Parameters
-
df (float or Tensor) – The degree of freedom of the distribution, which should be non-negative. If the input data type is Tensor, it indicates the batch creation of distributions with multiple different parameters, and the batch_shape (refer to the Distribution base class) is the parameter.
Example
>>> import paddle >>> m = paddle.distribution.Chi2(paddle.to_tensor([1.0])) >>> sample = m.sample() >>> sample.shape [1]
- property batch_shape : Sequence[int]
-
Returns batch shape of distribution
- Returns
-
batch shape
- Return type
-
Sequence[int]
-
entropy
(
)
Tensor
entropy¶
-
Entropy of gamma distribution
- Returns
-
Entropy.
- Return type
-
Tensor
- property event_shape : Sequence[int]
-
Returns event shape of distribution
- Returns
-
event shape
- Return type
-
Sequence[int]
-
kl_divergence
(
other: Gamma
)
Tensor
[source]
kl_divergence¶
-
The KL-divergence between two gamma distributions.
- Parameters
-
other (Gamma) – instance of Gamma.
- Returns
-
kl-divergence between two gamma distributions.
- Return type
-
Tensor
-
log_prob
(
value: float | Tensor
)
Tensor
log_prob¶
-
Log probability density function evaluated at value
- Parameters
-
value (float|Tensor) – Value to be evaluated
- Returns
-
Log probability.
- Return type
-
Tensor
- property mean : Tensor
-
Mean of gamma distribution.
- Returns
-
mean value.
- Return type
-
Tensor
-
prob
(
value: float | Tensor
)
Tensor
prob¶
-
Probability density function evaluated at value
- Parameters
-
value (float|Tensor) – Value to be evaluated.
- Returns
-
Probability.
- Return type
-
Tensor
-
probs
(
value: Tensor
)
Tensor
probs¶
-
Probability density/mass function.
Note
This method will be deprecated in the future, please use prob instead.
-
rsample
(
shape: Sequence[int] = []
)
Tensor
rsample¶
-
Generate reparameterized samples of the specified shape.
- Parameters
-
shape (Sequence[int], optional) – Shape of the generated samples.
- Returns
-
A tensor with prepended dimensions shape.The data type is float32.
- Return type
-
Tensor
-
sample
(
shape: Sequence[int] = []
)
Tensor
sample¶
-
Generate samples of the specified shape.
- Parameters
-
shape (Sequence[int], optional) – Shape of the generated samples.
- Returns
-
Tensor, A tensor with prepended dimensions shape.The data type is float32.
- property variance : Tensor
-
Variance of gamma distribution.
- Returns
-
variance value.
- Return type
-
Tensor