googlenet¶
- paddle.vision.models. googlenet ( pretrained=False, **kwargs ) [source]
-
GoogLeNet (Inception v1) model architecture from “Going Deeper with Convolutions”.
- Parameters
-
pretrained (bool, optional) – Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False.
**kwargs (optional) – Additional keyword arguments. For details, please refer to GoogLeNet.
- Returns
-
Layer. An instance of GoogLeNet (Inception v1) model.
Examples
>>> import paddle >>> from paddle.vision.models import googlenet >>> # Build model >>> model = googlenet() >>> # Build model and load imagenet pretrained weight >>> # model = googlenet(pretrained=True) >>> x = paddle.rand([1, 3, 224, 224]) >>> out, out1, out2 = model(x) >>> print(out.shape, out1.shape, out2.shape) [1, 1000] [1, 1000] [1, 1000]