ClipGradByGlobalNorm¶
- class paddle.nn. ClipGradByGlobalNorm ( clip_norm, group_name='default_group', auto_skip_clip=False ) [source]
-
Given a list of Tensor \(t\_list\) , calculate the global norm for the elements of all tensors in \(t\_list\) , and limit it to
clip_norm
.If the global norm is greater than
clip_norm
, all elements of \(t\_list\) will be compressed by a ratio.If the global norm is less than or equal to
clip_norm
, nothing will be done.
The list of Tensor \(t\_list\) is not passed from this class, but the gradients of all parameters set in
optimizer
. Ifneed_clip
of specific param isFalse
in itsParamAttr
, then the gradients of this param will not be clipped.Gradient clip will takes effect after being set in
optimizer
, see the documentoptimizer
(for example: SGD).The clipping formula is:
\[t\_list[i] = t\_list[i] * \frac{clip\_norm}{\max(global\_norm, clip\_norm)}\]where:
\[global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}\]Note
need_clip
ofClipGradyGlobalNorm
HAS BEEN DEPRECATED since 2.0. Please useneed_clip
inParamAttr
to specify the clip scope.- Parameters
-
clip_norm (float) – The maximum norm value.
group_name (str, optional) – The group name for this clip. Default value is
default_group
.auto_skip_clip (bool, optional) – skip clipping gradient. Default value is
False
.
Examples
>>> import paddle >>> x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32') >>> linear = paddle.nn.Linear(in_features=10, out_features=10, ... weight_attr=paddle.ParamAttr(need_clip=True), ... bias_attr=paddle.ParamAttr(need_clip=False)) >>> out = linear(x) >>> loss = paddle.mean(out) >>> loss.backward() >>> clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0) >>> sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip) >>> sdg.step()