PSRoIPool¶
- class paddle.vision.ops. PSRoIPool ( output_size, spatial_scale=1.0 ) [source]
-
This interface is used to construct a callable object of the
PSRoIPool
class. Please refer to psroi_pool.- Parameters
-
output_size (int|Tuple(int, int)) The pooled output size(H, W) – is int32. If int, H and W are both equal to output_size.
spatial_scale (float, optional) – Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0.
- Shape:
-
x: 4-D Tensor with shape (N, C, H, W).
boxes: 2-D Tensor with shape (num_rois, 4).
boxes_num: 1-D Tensor.
-
- output: 4-D tensor with shape (num_rois, output_channels, pooled_h, pooled_w).
-
The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.
- Returns
-
None.
Examples
>>> import paddle >>> psroi_module = paddle.vision.ops.PSRoIPool(7, 1.0) >>> x = paddle.uniform([2, 490, 28, 28], dtype='float32') >>> boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32') >>> boxes_num = paddle.to_tensor([1, 2], dtype='int32') >>> pool_out = psroi_module(x, boxes, boxes_num) >>> print(pool_out.shape) [3, 10, 7, 7]
-
forward
(
x,
boxes,
boxes_num
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments