auc¶
- paddle.static. auc ( input, label, curve='ROC', num_thresholds=4095, topk=1, slide_steps=1, ins_tag_weight=None ) [source]
-
Area Under the Curve (AUC) Layer
This implementation computes the AUC according to forward output and label. It is used very widely in binary classification evaluation.
Note: If input label contains values other than 0 and 1, it will be cast to bool. Find the relevant definitions here.
There are two types of possible curves:
ROC: Receiver operating characteristic;
PR: Precision Recall
- Parameters
-
input (Tensor) – A floating-point 2D Tensor, values are in the range [0, 1]. Each row is sorted in descending order. This input should be the output of topk. Typically, this Tensor indicates the probability of each label. A Tensor with type float32,float64.
label (Tensor) – A 2D int Tensor indicating the label of the training data. The height is batch size and width is always 1. A Tensor with type int32,int64.
curve (str, optional) – Curve type, can be ‘ROC’ or ‘PR’. Default ‘ROC’.
num_thresholds (int, optional) – The number of thresholds to use when discretizing the roc curve. Default 4095.
topk (int, optional) – only topk number of prediction output will be used for auc.
slide_steps (int, optional) – when calc batch auc, we can not only use step currently but the previous steps can be used. slide_steps=1 means use the current step, slide_steps=3 means use current step and the previous second steps, slide_steps=0 use all of the steps.
ins_tag_weight (Tensor, optional) – A 2D int Tensor indicating the data’s tag weight, 1 means real data, 0 means fake data. Default None, and it will be assigned to a tensor of value 1. A Tensor with type float32,float64.
- Returns
-
A tuple representing the current AUC. Data type is Tensor, supporting float32, float64. The return tuple is auc_out, batch_auc_out, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg ]
auc_out: the result of the accuracy rate batch_auc_out: the result of the batch accuracy batch_stat_pos: the statistic value for label=1 at the time of batch calculation batch_stat_neg: the statistic value for label=0 at the time of batch calculation stat_pos: the statistic for label=1 at the time of calculation stat_neg: the statistic for label=0 at the time of calculation
- Return type
-
Tensor
Examples
>>> import paddle >>> import numpy as np >>> paddle.enable_static() >>> paddle.seed(2023) >>> data = paddle.static.data(name="input", shape=[-1, 32,32], dtype="float32") >>> label = paddle.static.data(name="label", shape=[-1], dtype="int") >>> fc_out = paddle.static.nn.fc(x=data, size=2) >>> predict = paddle.nn.functional.softmax(x=fc_out) >>> result=paddle.static.auc(input=predict, label=label) >>> place = paddle.CPUPlace() >>> exe = paddle.static.Executor(place) >>> exe.run(paddle.static.default_startup_program()) >>> np.random.seed(1107) >>> x = np.random.rand(3,32,32).astype("float32") >>> y = np.array([1,0,1]) >>> output= exe.run(feed={"input": x,"label": y}, ... fetch_list=[result[0]]) >>> print(output) [array(1.)]
# you can learn the usage of ins_tag_weight by the following code. >>> import paddle >>> import numpy as np >>> paddle.enable_static() >>> paddle.seed(2023) >>> data = paddle.static.data(name="input", shape=[-1, 32,32], dtype="float32") >>> label = paddle.static.data(name="label", shape=[-1], dtype="int") >>> ins_tag_weight = paddle.static.data(name='ins_tag_weight', shape=[-1,16], lod_level=0, dtype='float64') >>> fc_out = paddle.static.nn.fc(x=data, size=2) >>> predict = paddle.nn.functional.softmax(x=fc_out) >>> result=paddle.static.auc(input=predict, label=label, ins_tag_weight=ins_tag_weight) >>> place = paddle.CPUPlace() >>> exe = paddle.static.Executor(place) >>> exe.run(paddle.static.default_startup_program()) >>> np.random.seed(1107) >>> x = np.random.rand(3,32,32).astype("float32") >>> y = np.array([1,0,1]) >>> z = np.array([1,0,1]).astype("float64") >>> output= exe.run(feed={"input": x,"label": y, "ins_tag_weight":z}, ... fetch_list=[result[0]]) >>> print(output) [array(1.)]