PiecewiseDecay

class paddle.optimizer.lr. PiecewiseDecay ( boundaries, values, last_epoch=- 1, verbose=False ) [source]

Piecewise learning rate scheduler.

The algorithm can be described as the code below:

boundaries = [100, 200]
values = [1.0, 0.5, 0.1]
if epoch < 100:
    learning_rate = 1.0
elif 100 <= global_step < 200:
    learning_rate = 0.5
else:
    learning_rate = 0.1
Parameters
  • boundaries (list|tuple) – A list/tuple of steps numbers. The type of element in the list is python int.

  • values (list|tuple) – A list/tuple of learning rate values that will be picked during different epoch boundaries. The type of element in the list is python float. The values have one more element than boundaries.

  • last_epoch (int, optional) – The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.

  • verbose (bool, optional) – If True, prints a message to stdout for each update. Default: False .

Returns

PiecewiseDecay instance to schedule learning rate.

Examples

>>> # Example1: train on default dynamic graph mode
>>> import paddle
>>> import numpy as np

>>> # train on default dynamic graph mode
>>> linear = paddle.nn.Linear(10, 10)
>>> scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
>>> sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
>>> for epoch in range(20):
...     for batch_id in range(5):
...         x = paddle.uniform([10, 10])
...         out = linear(x)
...         loss = paddle.mean(out)
...         loss.backward()
...         sgd.step()
...         sgd.clear_gradients()
...         scheduler.step()    # If you update learning rate each step
...     # scheduler.step()        # If you update learning rate each epoch
>>> # Example2: train on static graph mode
>>> import paddle
>>> import numpy as np
>>> paddle.enable_static()
>>> main_prog = paddle.static.Program()
>>> start_prog = paddle.static.Program()
>>> with paddle.static.program_guard(main_prog, start_prog):
...     x = paddle.static.data(name='x', shape=[None, 4, 5])
...     y = paddle.static.data(name='y', shape=[None, 4, 5])
...     z = paddle.static.nn.fc(x, 100)
...     loss = paddle.mean(z)
...     scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
...     sgd = paddle.optimizer.SGD(learning_rate=scheduler)
...     sgd.minimize(loss)
...
>>> exe = paddle.static.Executor()
>>> exe.run(start_prog)
>>> for epoch in range(20):
...     for batch_id in range(5):
...         out = exe.run(
...             main_prog,
...             feed={
...                 'x': np.random.randn(3, 4, 5).astype('float32'),
...                 'y': np.random.randn(3, 4, 5).astype('float32')
...             },
...             fetch_list=loss.name)
...         scheduler.step()    # If you update learning rate each step
...     # scheduler.step()        # If you update learning rate each epoch
get_lr ( )

get_lr

For those subclass who overload LRScheduler (Base Class), User should have a custom implementation of get_lr() .

Otherwise, an NotImplementedError exception will be thrown.

set_dict ( state_dict )

set_dict

Loads the schedulers state.

set_state_dict ( state_dict )

set_state_dict

Loads the schedulers state.

state_dict ( )

state_dict

Returns the state of the scheduler as a dict.

It is a subset of self.__dict__ .

state_keys ( )

state_keys

For those subclass who overload LRScheduler (Base Class). Acquiescently, “last_epoch, last_lr” will be saved by self.keys = ['last_epoch', 'last_lr'] .

last_epoch is the current epoch num, and last_lr is the current learning rate.

If you want to change the default behavior, you should have a custom implementation of _state_keys() to redefine self.keys .

step ( epoch=None )

step

step should be called after optimizer.step . It will update the learning rate in optimizer according to current epoch . The new learning rate will take effect on next optimizer.step .

Parameters

epoch (int, None) – specify current epoch. Default: None. Auto-increment from last_epoch=-1.

Returns

None

Examples

>>> import paddle
>>> value = paddle.arange(26, dtype='float32')
>>> a = paddle.reshape(value, [2, 13])
>>> linear = paddle.nn.Linear(13, 5)
>>> adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95,
...                             parameters = linear.parameters())
>>> out = linear(a)
>>> out.backward()
>>> adadelta.step()
>>> adadelta.clear_grad()
>>> import paddle
>>> value = paddle.arange(26, dtype='float32')
>>> a = paddle.reshape(value, [2, 13])
>>> linear = paddle.nn.Linear(13, 5)
>>> adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95,
...                             parameters = linear.parameters())
>>> out = linear(a)
>>> out.backward()
>>> adadelta.step()
>>> adadelta.clear_grad()