SoftMarginLoss¶
- class paddle.nn. SoftMarginLoss ( reduction='mean', name=None ) [source]
-
Creates a criterion that measures a two-class soft margin loss between input predictions
input
and target labelslabel
. It can be described as:\[Out = log(1 + exp((-label * input)))\]- Parameters
-
reduction (str, optional) – Indicate how to average the loss by batch_size, the candidates are
'none'
|'mean'
|'sum'
. Ifreduction
is'none'
, the unreduced loss is returned; Ifreduction
is'mean'
, the reduced mean loss is returned; Ifreduction
is'sum'
, the summed loss is returned. Default is'mean'
.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shapes:
-
Input (Tensor): The input tensor with shape:
[N, *]
, N is batch_size, * means any number of additional dimensions. Theinput
ranges from -inf to inf Available dtype is float32, float64.Label (Tensor): The target labels tensor with the same shape as
input
. The target labels which values should be numbers -1 or 1. Available dtype is int32, int64, float32, float64.Output (Tensor): If
reduction
is'none'
, the shape of output is same asinput
, else the shape of output is [].
- Returns
-
A callable object of SoftMarginLoss.
Examples
>>> import paddle >>> paddle.seed(2023) >>> input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32') >>> label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32') >>> soft_margin_loss = paddle.nn.SoftMarginLoss() >>> output = soft_margin_loss(input, label) >>> print(output) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.64022040) >>> input_np = paddle.uniform(shape=(5, 5), min=0.1, max=0.8, dtype="float64") >>> label_np = paddle.randint(high=2, shape=(5, 5), dtype="int64") >>> label_np[label_np==0]=-1 >>> input = paddle.to_tensor(input_np) >>> label = paddle.to_tensor(label_np) >>> soft_margin_loss = paddle.nn.SoftMarginLoss(reduction='none') >>> output = soft_margin_loss(input, label) >>> print(output) Tensor(shape=[5, 5], dtype=float64, place=Place(cpu), stop_gradient=True, [[1.10725628, 0.48778139, 0.56217249, 1.12581404, 0.51430043], [0.90375795, 0.37761249, 0.43007557, 0.95089798, 0.43288319], [1.16043599, 0.63015939, 0.51362715, 0.43617541, 0.57783301], [0.81927846, 0.52558369, 0.59713908, 0.83100696, 0.50811616], [0.82684205, 1.02064907, 0.50296995, 1.13461733, 0.93222519]])
-
forward
(
input,
label
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments