matmul¶
- paddle.sparse. matmul ( x, y, name=None ) [source]
-
Note
This API is only supported from
CUDA 11.0
.Applies matrix multiplication of two Tensors.
The supported input/output Tensor type are as follows:
Note
x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor] x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor] x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor] x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor]
It supports backward propagation.
Dimensions x and y must be >= 2D. Automatic broadcasting of Tensor is not supported. the shape of x should be [*, M, K] , and the shape of y should be [*, K, N] , where * is zero or more batch dimensions.
- Parameters
-
x (SparseTensor) – The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
y (SparseTensor|DenseTensor) – The input tensor. It can be SparseCooTensor/SparseCsrTensor/DenseTensor. The data type can be float32 or float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Determined by x and y .
- Return type
-
SparseTensor|DenseTensor
Examples
>>> >>> import paddle >>> paddle.device.set_device('gpu') >>> # csr @ dense -> dense >>> crows = [0, 1, 2, 3] >>> cols = [1, 2, 0] >>> values = [1., 2., 3.] >>> csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, [3, 3]) >>> print(csr) Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, crows=[0, 1, 2, 3], cols=[1, 2, 0], values=[1., 2., 3.]) >>> dense = paddle.ones([3, 2]) >>> out = paddle.sparse.matmul(csr, dense) >>> print(out) Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[1., 1.], [2., 2.], [3., 3.]]) >>> # coo @ dense -> dense >>> indices = [[0, 1, 2], [1, 2, 0]] >>> values = [1., 2., 3.] >>> coo = paddle.sparse.sparse_coo_tensor(indices, values, [3, 3]) >>> print(coo) Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, indices=[[0, 1, 2], [1, 2, 0]], values=[1., 2., 3.]) >>> dense = paddle.ones([3, 2]) >>> out = paddle.sparse.matmul(coo, dense) >>> print(out) Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[1., 1.], [2., 2.], [3., 3.]])