nce¶
- paddle.static.nn. nce ( input, label, num_total_classes, sample_weight=None, param_attr=None, bias_attr=None, num_neg_samples=None, name=None, sampler='uniform', custom_dist=None, seed=0, is_sparse=False ) [source]
-
- Api_attr
-
Static Graph
Compute and return the noise-contrastive estimation training loss. See Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. By default this operator uses a uniform distribution for sampling.
- Parameters
-
input (Tensor) – Input tensor, 2-D tensor with shape [batch_size, dim], and data type is float32 or float64.
label (Tensor) – Input label, 2-D tensor with shape [batch_size, num_true_class], and data type is int64.
num_total_classes (int) – Total number of classes in all samples.
sample_weight (Tensor|None) – A Tensor of shape [batch_size, 1] storing a weight for each sample. The default weight for each sample is 1.0.
param_attr (ParamAttr|None) – To specify the weight parameter attribute. Default: None, which means the default weight parameter property is used. See usage for details in ParamAttr .
bias_attr (ParamAttr|None) – To specify the bias parameter attribute. Default: None, which means the default bias parameter property is used. See usage for details in ParamAttr .
num_neg_samples (int) – The number of negative classes. The default value is 10.
name (str|None) – For detailed information, please refer to Name . Usually name is no need to set and None by default.
sampler (str, optional) – The sampler used to sample class from negative classes. It can be ‘uniform’, ‘log_uniform’ or ‘custom_dist’. default: ‘uniform’.
custom_dist (nd.array|None) – A numpy ndarray with size=num_total_classes. It is used when sampler is set to ‘custom_dist’. custom_dist[i] is the probability of i-th class to be sampled. default: None.
seed (int, optional) – The seed used in sampler. Default 0, means no random seed.
is_sparse (bool, optional) – The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default False.
- Returns
-
The output nce loss.
- Return type
-
Tensor
Examples
>>> import paddle >>> import numpy as np >>> paddle.enable_static() >>> window_size = 5 >>> words = [] >>> for i in range(window_size): ... words.append(paddle.static.data( ... name='word_{0}'.format(i), shape=[-1, 1], dtype='int64')) >>> dict_size = 10000 >>> label_word = int(window_size / 2) + 1 >>> embs = [] >>> for i in range(window_size): ... if i == label_word: ... continue ... ... emb = paddle.static.nn.embedding(input=words[i], size=[dict_size, 32], ... param_attr='embed', is_sparse=True) ... embs.append(emb) >>> embs = paddle.concat(x=embs, axis=1) # concat from 4 * [(-1, 1, 32)] to (-1, 4, 32) >>> embs = paddle.reshape(x=embs, shape=(-1, 4 * 32)) # reshape to (batch_size = -1, dim = 4*32) >>> loss = paddle.static.nn.nce(input=embs, label=words[label_word], ... num_total_classes=dict_size, param_attr='nce.w_0', ... bias_attr='nce.b_0') # or use custom distribution >>> dist = np.array([0.05,0.5,0.1,0.3,0.05]) >>> loss = paddle.static.nn.nce(input=embs, label=words[label_word], ... num_total_classes=5, param_attr='nce.w_1', ... bias_attr='nce.b_1', ... num_neg_samples=3, ... sampler="custom_dist", ... custom_dist=dist)