multiplex¶
- paddle. multiplex ( inputs, index, name=None ) [source]
-
Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
If the input of this OP contains \(m\) Tensors, where \(I_{i}\) means the i-th input Tensor, \(i\) between \([0,m)\) .
And \(O\) means the output, where \(O[i]\) means the i-th row of the output, then the output satisfies that \(O[i] = I_{index[i]}[i]\) .
For Example:
Given: inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]], [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]], [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]], [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]] index = [[3],[0],[1],[2]] out = [[3,0,3,4], # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4] [0,1,3,4], # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4] [1,2,4,2], # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2] [2,3,3,4]] # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
- Parameters
-
inputs (list) – The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64, complex64, complex128. All input Tensor shapes should be the same and rank must be at least 2.
index (Tensor) – Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of multiplex OP, with data type being float32, float64, int32, int64.
- Return type
-
Tensor
Examples
>>> import paddle >>> img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32) >>> img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32) >>> inputs = [img1, img2] >>> index = paddle.to_tensor([[1], [0]], dtype=paddle.int32) >>> res = paddle.multiplex(inputs, index) >>> print(res) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[5., 6.], [3., 4.]])