fused_bias_act¶
- paddle.incubate.nn.functional. fused_bias_act ( x: Tensor, bias: Tensor | None = None, dequant_scales: Tensor | None = None, shift: Tensor | None = None, smooth: Tensor | None = None, act_method: str = 'gelu', compute_dtype: str = 'default', quant_scale: float = - 1, quant_round_type: int = 0, quant_max_bound: float = 0, quant_min_bound: float = 0 ) Tensor [source]
-
Applies fused_bias_act kernel
- Parameters
-
x (Tensor) – the input Tensor.
bias (Tensor, optional) – the input bias Tensor. If it is None, no bias addition would be performed. Otherwise, the bias will be added before activation function. Default: None.
dequant_scales (Tensor, optional) – the dequantization scale tensor, If it is None, no dequantization will be performed. Default: None.
shift (Tensor, optional) – the shift tensor, used to shift the input tensor before activation function. If None, no translation will be performed. Default: None.
smooth (Tensor, optional) – the smooth tensor, used to smooth the input tensor before activation function. If None, no smoothing processing will be performed. Default: None.
act_method (Str, optional) – the activation method, specify the activation function to be used. Default: gelu.
compute_dtype (Str, optional) – a compute dtype, is used to represent the input data type. Default is “default”, which means compute dtype is determined by input dtype.
quant_scale (Float, optional) – the quant scale. Default: -1.
quant_round_type (Int, optional) – the quant round type, if 0 is set, value will be rounding to nearest ties to even. If 1 is set, value will be rounding to nearest ties away from zero. Default: 0.
quant_max_bound (Float, optional) – the max bound of float type to int type. Default: 0.
quant_min_bound (Float, optional) – the min bound of float type to int type. Default: 0.
- Returns
-
the output Tensor.
- Return type
-
Tensor
Examples
>>> >>> import paddle >>> from paddle.incubate.nn.functional import fused_bias_act >>> paddle.set_device('gpu') >>> x = paddle.randn([3, 5]) >>> bias = paddle.randn([5]) >>> out = fused_bias_act(x, bias) >>> print(out.shape) [3, 5]