Pad1D¶
- class paddle.nn. Pad1D ( padding, mode='constant', value=0.0, data_format='NCL', name=None ) [source]
-
This interface is used to construct a callable object of the
Pad1D
class. Pad tensor according topad
,mode
andvalue
. If mode isreflect
, pad[0] and pad[1] must be no greater than width-1.- Parameters
-
padding (Tensor|list[int]|int) – The padding size with data type
'int'
. If is'int'
, use the same padding in both dimensions. Else [len(padding)/2] dimensions of input will be padded. The pad has the form (pad_left, pad_right).mode (str, optional) –
Four modes:
'constant'
(default),'reflect'
,'replicate'
,'circular'
. Default:'constant'
.’constant’ mode, uses a constant value to pad the input tensor.
’reflect’ mode, uses reflection of the input boundaries to pad the input tensor.
’replicate’ mode, uses input boundaries to pad the input tensor.
’circular’ mode, uses circular input to pad the input tensor.
value (float, optional) – The value to fill the padded areas. Default is \(0.0\).
data_format (str, optional) – An string from:
'NCL'
,'NLC'
. Specify the data format of the input data. Default:'NCL'
.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default:
'None'
.
- Returns
-
None
Examples
>>> import paddle >>> import paddle.nn as nn >>> input_shape = (1, 2, 3) >>> pad = [1, 2] >>> mode = "constant" >>> data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1 >>> my_pad = nn.Pad1D(padding=pad, mode=mode) >>> result = my_pad(data) >>> print(result) Tensor(shape=[1, 2, 6], dtype=float32, place=Place(cpu), stop_gradient=True, [[[0., 1., 2., 3., 0., 0.], [0., 4., 5., 6., 0., 0.]]])
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.