randn¶
- paddle. randn ( shape, dtype=None, name=None ) [source]
-
Returns a Tensor filled with random values sampled from a standard normal distribution with mean 0 and standard deviation 1, with
shape
anddtype
.- Parameters
-
shape (tuple|list|Tensor) – Shape of the Tensor to be created. The data type is
int32
orint64
. Ifshape
is a list or tuple, each element of it should be integer or 0-D Tensor with shape []. Ifshape
is an Tensor, it should be an 1-D Tensor which represents a list.dtype (str|np.dtype, optional) – The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see
get_default_dtype
for details).name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
A Tensor filled with random values sampled from a standard normal distribution with mean 0 and standard deviation 1, with
shape
anddtype
. - Return type
-
Tensor
Examples
>>> import paddle >>> # example 1: attr shape is a list which doesn't contain Tensor. >>> out1 = paddle.randn(shape=[2, 3]) >>> print(out1) >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[-0.29270014, -0.02925120, -1.07807338], [ 1.19966674, -0.46673676, -0.18050613]]) >>> >>> # example 2: attr shape is a list which contains Tensor. >>> dim1 = paddle.to_tensor(2, 'int64') >>> dim2 = paddle.to_tensor(3, 'int32') >>> out2 = paddle.randn(shape=[dim1, dim2, 2]) >>> print(out2) >>> Tensor(shape=[2, 3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[[-0.26019713, 0.54994684], [ 0.46403214, -1.41178775], [-0.15682915, -0.26639181]], [[ 0.01364388, -2.81676364], [ 0.86996621, 0.07524570], [ 0.21443737, 0.90938759]]]) >>> >>> # example 3: attr shape is a Tensor, the data type must be int64 or int32. >>> shape_tensor = paddle.to_tensor([2, 3]) >>> out3 = paddle.randn(shape_tensor) >>> print(out3) >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[ 0.57575506, -1.60349274, -0.27124876], [ 1.08381045, 0.81270242, -0.26763600]]) >>>