SqueezeNet

class paddle.vision.models. SqueezeNet ( version, num_classes=1000, with_pool=True ) [source]

SqueezeNet model from “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”.

Parameters
  • version (str) – Version of SqueezeNet, which can be “1.0” or “1.1”.

  • num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000.

  • with_pool (bool, optional) – Use pool before the last fc layer or not. Default: True.

Returns

Layer. An instance of SqueezeNet model.

Examples

>>> import paddle
>>> from paddle.vision.models import SqueezeNet

>>> # build v1.0 model
>>> model = SqueezeNet(version='1.0')

>>> # build v1.1 model
>>> # model = SqueezeNet(version='1.1')

>>> x = paddle.rand([1, 3, 224, 224])
>>> out = model(x)

>>> print(out.shape)
[1, 1000]
forward ( inputs )

forward

Defines the computation performed at every call. Should be overridden by all subclasses.

Parameters
  • *inputs (tuple) – unpacked tuple arguments

  • **kwargs (dict) – unpacked dict arguments