soft_margin_loss¶
- paddle.nn.functional. soft_margin_loss ( input, label, reduction='mean', name=None ) [source]
-
The API measures the soft margin loss between input predictions
input
and target labelslabel
. It can be described as:\[Out = log(1 + exp((-label * input)))\]- Parameters
-
input (Tensor) – The input predications tensor with shape:
[N, *]
, N is batch_size, * means any number of additional dimensions. Theinput
ranges from -inf to inf. Available dtype is float32, float64.label (Tensor) – The target labels tensor with the same shape as
input
. The target labels which values should be numbers -1 or 1. Available dtype is int32, int64, float32, float64.reduction (str, optional) – Indicate how to average the loss by batch_size, the candidates are
'none'
|'mean'
|'sum'
. Ifreduction
is'none'
, the unreduced loss is returned; Ifreduction
is'mean'
, the reduced mean loss is returned; Ifreduction
is'sum'
, the summed loss is returned. Default is'mean'
.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
If
reduction
is'none'
, the shape of output is same asinput
, else the shape of output is []. - Return type
-
Output (Tensor)
Examples
>>> import paddle >>> paddle.seed(2023) >>> input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32') >>> label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32') >>> output = paddle.nn.functional.soft_margin_loss(input, label) >>> print(output) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.64022040) >>> input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8) >>> label = paddle.randint(0, 2, shape=(5, 5), dtype="int64") >>> label[label==0] = -1 >>> output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none') >>> print(output) Tensor(shape=[5, 5], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.10725629, 0.48778144, 0.56217247, 1.12581408, 0.51430041], [0.90375793, 0.37761253, 0.43007556, 0.95089805, 0.43288314], [1.16043591, 0.63015938, 0.51362717, 0.43617544, 0.57783306], [0.81927848, 0.52558368, 0.59713912, 0.83100700, 0.50811619], [0.82684207, 1.02064908, 0.50296998, 1.13461733, 0.93222517]])