rand¶
- paddle. rand ( shape, dtype=None, name=None ) [source]
-
Returns a Tensor filled with random values sampled from a uniform distribution in the range [0, 1), with
shape
anddtype
.- Parameters
-
shape (tuple|list|Tensor) – Shape of the Tensor to be created. The data type is
int32
orint64
. Ifshape
is a list or tuple, each element of it should be integer or 0-D Tensor with shape []. Ifshape
is an Tensor, it should be an 1-D Tensor which represents a list.dtype (str|np.dtype, optional) – The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see get_default_dtype for details).
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor filled with random values sampled from a uniform distribution in the range [0, 1), with
shape
anddtype
. - Return type
-
Tensor
Examples
>>> import paddle >>> # example 1: attr shape is a list which doesn't contain Tensor. >>> out1 = paddle.rand(shape=[2, 3]) >>> print(out1) >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.68532258, 0.69431782, 0.44835982], [0.13204314, 0.48128194, 0.36574543]]) >>> >>> # example 2: attr shape is a list which contains Tensor. >>> dim1 = paddle.to_tensor(2, 'int64') >>> dim2 = paddle.to_tensor(3, 'int32') >>> out2 = paddle.rand(shape=[dim1, dim2, 2]) >>> print(out2) >>> Tensor(shape=[2, 3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[[0.62102991, 0.45255184], [0.81386960, 0.22463219], [0.87946558, 0.28097662]], [[0.36565998, 0.63203937], [0.58640617, 0.92696166], [0.85060406, 0.38138932]]]) >>> >>> # example 3: attr shape is a Tensor, the data type must be int64 or int32. >>> shape_tensor = paddle.to_tensor([2, 3]) >>> out3 = paddle.rand(shape_tensor) >>> print(out3) >>> Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.77650446, 0.12870903, 0.05153799], [0.27029657, 0.03963696, 0.42487794]]) >>>