nan_to_num¶
- paddle. nan_to_num ( x, nan=0.0, posinf=None, neginf=None, name=None ) [source]
-
Replaces NaN, positive infinity, and negative infinity values in input tensor.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float32, float64.
nan (float, optional) – the value to replace NaNs with. Default is 0.
posinf (float, optional) – if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
neginf (float, optional) – if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Results of nan_to_num operation input Tensor
x
. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32') >>> out1 = paddle.nan_to_num(x) >>> out1 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 0. , 0.30000001 , 340282346638528859811704183484516925440., -340282346638528859811704183484516925440.]) >>> out2 = paddle.nan_to_num(x, nan=1) >>> out2 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 1. , 0.30000001 , 340282346638528859811704183484516925440., -340282346638528859811704183484516925440.]) >>> out3 = paddle.nan_to_num(x, posinf=5) >>> out3 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 0. , 0.30000001 , 5. , -340282346638528859811704183484516925440.]) >>> out4 = paddle.nan_to_num(x, nan=10, neginf=-99) >>> out4 Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [ 10. , 0.30000001 , 340282346638528859811704183484516925440., -99. ])