isclose¶
- paddle. isclose ( x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None ) [source]
-
Check if all \(x\) and \(y\) satisfy the condition:
\[\left| x - y \right| \leq atol + rtol \times \left| y \right|\]elementwise, for all elements of \(x\) and \(y\). The behaviour of this operator is analogous to \(numpy.isclose\), namely that it returns \(True\) if two tensors are elementwise equal within a tolerance.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64, complex64, complex128.
y (Tensor) – The input tensor, it’s data type should be float16, float32, float64, complex64, complex128.
rtol (rtoltype, optional) – The relative tolerance. Default: \(1e-5\) .
atol (atoltype, optional) – The absolute tolerance. Default: \(1e-8\) .
equal_nan (equalnantype, optional) – If \(True\) , then two \(NaNs\) will be compared as equal. Default: \(False\) .
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
The output tensor, it’s data type is bool.
- Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([10000., 1e-07]) >>> y = paddle.to_tensor([10000.1, 1e-08]) >>> result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, ... equal_nan=False, name="ignore_nan") >>> print(result1) Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False]) >>> result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, ... equal_nan=True, name="equal_nan") >>> print(result2) Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False]) >>> x = paddle.to_tensor([1.0, float('nan')]) >>> y = paddle.to_tensor([1.0, float('nan')]) >>> result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, ... equal_nan=False, name="ignore_nan") >>> print(result1) Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False]) >>> result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, ... equal_nan=True, name="equal_nan") >>> print(result2) Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True, True])