LogMelSpectrogram¶
- class paddle.audio.features. LogMelSpectrogram ( sr: int = 22050, n_fft: int = 512, hop_length: Optional[int] = None, win_length: Optional[int] = None, window: str = 'hann', power: float = 2.0, center: bool = True, pad_mode: str = 'reflect', n_mels: int = 64, f_min: float = 50.0, f_max: Optional[float] = None, htk: bool = False, norm: Union[str, float] = 'slaney', ref_value: float = 1.0, amin: float = 1e-10, top_db: Optional[float] = None, dtype: str = 'float32' ) [source]
-
Compute log-mel-spectrogram feature of given signals, typically audio waveforms.
- Parameters
-
sr (int, optional) – Sample rate. Defaults to 22050.
n_fft (int, optional) – The number of frequency components of the discrete Fourier transform. Defaults to 512.
hop_length (Optional[int], optional) – The hop length of the short time FFT. If None, it is set to win_length//4. Defaults to None.
win_length (Optional[int], optional) – The window length of the short time FFT. If None, it is set to same as n_fft. Defaults to None.
window (str, optional) – The window function applied to the signal before the Fourier transform. Supported window functions: ‘hamming’, ‘hann’, ‘kaiser’, ‘gaussian’, ‘exponential’, ‘triang’, ‘bohman’, ‘blackman’, ‘cosine’, ‘tukey’, ‘taylor’. Defaults to ‘hann’.
power (float, optional) – Exponent for the magnitude spectrogram. Defaults to 2.0.
center (bool, optional) – Whether to pad x to make that the \(t imes hop\_length\) at the center of t-th frame. Defaults to True.
pad_mode (str, optional) – Choose padding pattern when center is True. Defaults to ‘reflect’.
n_mels (int, optional) – Number of mel bins. Defaults to 64.
f_min (float, optional) – Minimum frequency in Hz. Defaults to 50.0.
f_max (Optional[float], optional) – Maximum frequency in Hz. Defaults to None.
htk (bool, optional) – Use HTK formula in computing fbank matrix. Defaults to False.
norm (Union[str, float], optional) – Type of normalization in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. Defaults to ‘slaney’.
ref_value (float, optional) – The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
amin (float, optional) – The minimum value of input magnitude. Defaults to 1e-10.
top_db (Optional[float], optional) – The maximum db value of spectrogram. Defaults to None.
dtype (str, optional) – Data type of input and window. Defaults to ‘float32’.
- Returns
-
Layer. An instance of LogMelSpectrogram.
Examples
>>> import paddle >>> from paddle.audio.features import LogMelSpectrogram >>> sample_rate = 16000 >>> wav_duration = 0.5 >>> num_channels = 1 >>> num_frames = sample_rate * wav_duration >>> wav_data = paddle.linspace(-1.0, 1.0, num_frames) * 0.1 >>> waveform = wav_data.tile([num_channels, 1]) >>> feature_extractor = LogMelSpectrogram(sr=sample_rate, n_fft=512, window = 'hann', power = 1.0) >>> feats = feature_extractor(waveform)
-
forward
(
x: paddle.Tensor
)
paddle.Tensor
forward¶
-
- Parameters
-
x (Tensor) – Tensor of waveforms with shape (N, T)
- Returns
-
Log mel spectrograms with shape (N, n_mels, num_frames).
- Return type
-
Tensor