Assign¶
- class paddle.nn.initializer. Assign ( value, name=None ) [source]
-
Init an parameter with a numpy array, list, or tensor.
- Parameters
-
value (Tensor|numpy.ndarray|list|tuple) – numpy array, list, tuple, or tensor to initialize the parameter.
name (str, optional) – Normally there is no need for user to set this property. For more information, please refer to Name. Default is None.
- Returns
-
A parameter initialized by the input numpy array, list, or tensor.
Examples
>>> import paddle >>> import numpy as np >>> # numpy array >>> data_1 = paddle.ones(shape=[1, 2], dtype='float32') >>> weight_attr_1 = paddle.ParamAttr( ... name="linear_weight_1", ... initializer=paddle.nn.initializer.Assign(np.array([2, 2]))) >>> bias_attr_1 = paddle.ParamAttr( ... name="linear_bias_1", ... initializer=paddle.nn.initializer.Assign(np.array([2]))) >>> linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1, bias_attr=bias_attr_1) >>> print(linear_1.weight.numpy()) [2. 2.] >>> print(linear_1.bias.numpy()) [2.] >>> res_1 = linear_1(data_1) >>> print(res_1.numpy()) [6.] >>> # python list >>> data_2 = paddle.ones(shape=[1, 2], dtype='float32') >>> weight_attr_2 = paddle.ParamAttr( ... name="linear_weight_2", ... initializer=paddle.nn.initializer.Assign([2, 2])) >>> bias_attr_2 = paddle.ParamAttr( ... name="linear_bias_2", ... initializer=paddle.nn.initializer.Assign([2])) >>> linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2, bias_attr=bias_attr_2) >>> print(linear_2.weight.numpy()) [2. 2.] >>> print(linear_2.bias.numpy()) [2.] >>> res_2 = linear_2(data_2) >>> print(res_2.numpy()) [6.] >>> # tensor >>> data_3 = paddle.ones(shape=[1, 2], dtype='float32') >>> weight_attr_3 = paddle.ParamAttr( ... name="linear_weight_3", ... initializer=paddle.nn.initializer.Assign(paddle.full([2], 2))) >>> bias_attr_3 = paddle.ParamAttr( ... name="linear_bias_3", ... initializer=paddle.nn.initializer.Assign(paddle.full([1], 2))) >>> linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3, bias_attr=bias_attr_3) >>> print(linear_3.weight.numpy()) [2. 2.] >>> print(linear_3.bias.numpy()) [2.] >>> res_3 = linear_3(data_3) >>> print(res_3.numpy()) [6.]