CosineEmbeddingLoss¶
- class paddle.nn. CosineEmbeddingLoss ( margin=0, reduction='mean', name=None ) [source]
-
This interface is used to construct a callable object of the
CosineEmbeddingLoss
class. The CosineEmbeddingLoss layer measures the cosine_embedding loss between input predictionsinput1
,input2
and target labelslabel
with values 1 or 0. This is used for measuring whether two inputs are similar or dissimilar and is typically used for learning nonlinear embeddings or semi-supervised learning. The cosine embedding loss can be described as:If label = 1, then the loss value can be calculated as follow:
\[Out = 1 - cos(input1, input2)\]If label = -1, then the loss value can be calculated as follow:
\[Out = max(0, cos(input1, input2)) - margin\]- The operator cos can be described as follow:
-
\[cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}\]
- Parameters
-
margin (float, optional) – Should be a number from \(-1\) to \(1\), \(0\) to \(0.5\) is suggested. If
margin
is missing, the default value is \(0\).reduction (string, optional) – Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
.'none'
: no reduction will be applied,'mean'
: the sum of the output will be divided by the number of elements in the output,'sum'
: the output will be summed.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shape:
-
- input1 (Tensor): tensor with shape: [N, M] or [M], ‘N’ means batch size, which can be 0, ‘M’ means the length of input array.
-
Available dtypes are float32, float64.
- input2 (Tensor): tensor with shape: [N, M] or [M], ‘N’ means batch size, which can be 0, ‘M’ means the length of input array.
-
Available dtypes are float32, float64.
- label (Tensor): tensor with shape: [N] or [1], ‘N’ means the length of input array. The target labels values should be -1 or 1.
-
Available dtypes are int32, int64, float32, float64.
-
output (Tensor): Tensor, the cosine embedding Loss of Tensor
input1
input2
andlabel
. -
If reduction is
'none'
, the shape of output loss is [N], the same asinput
. If reduction is'mean'
or'sum'
, the shape of output loss is [].
Examples
>>> import paddle >>> input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32') >>> input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32') >>> label = paddle.to_tensor([1, -1], 'int64') >>> cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='mean') >>> output = cosine_embedding_loss(input1, input2, label) >>> print(output) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.21155193) >>> cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='sum') >>> output = cosine_embedding_loss(input1, input2, label) >>> print(output) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.42310387) >>> cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='none') >>> output = cosine_embedding_loss(input1, input2, label) >>> print(output) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [0.42310387, 0. ])
-
forward
(
input1,
input2,
label
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments