ParameterList¶
- class paddle.nn. ParameterList ( parameters=None ) [source]
-
ParameterList Container.
This container acts like a Python list, but parameters it contains will be properly added.
- Parameters
-
parameters (iterable, optional) – Iterable Parameters to be added.
Examples
>>> import paddle >>> class MyLayer(paddle.nn.Layer): ... def __init__(self, num_stacked_param): ... super().__init__() ... # create ParameterList with iterable Parameters ... self.params = paddle.nn.ParameterList( ... [paddle.create_parameter( ... shape=[2, 2], dtype='float32')] * num_stacked_param) ... ... def forward(self, x): ... for i, p in enumerate(self.params): ... tmp = self._helper.create_variable_for_type_inference('float32') ... self._helper.append_op( ... type="mul", ... inputs={"X": x, ... "Y": p}, ... outputs={"Out": tmp}, ... attrs={"x_num_col_dims": 1, ... "y_num_col_dims": 1}) ... x = tmp ... return x ... >>> x = paddle.uniform(shape=[5, 2], dtype='float32') >>> num_stacked_param = 4 >>> model = MyLayer(num_stacked_param) >>> print(len(model.params)) 4 >>> res = model(x) >>> print(res.shape) [5, 2] >>> replaced_param = paddle.create_parameter(shape=[2, 3], dtype='float32') >>> model.params[num_stacked_param - 1] = replaced_param # replace last param >>> res = model(x) >>> print(res.shape) [5, 3] >>> model.params.append(paddle.create_parameter(shape=[3, 4], dtype='float32')) # append param >>> print(len(model.params)) 5 >>> res = model(x) >>> print(res.shape) [5, 4]
-
append
(
parameter
)
append¶
-
Appends a given parameter at the end of the list.
- Parameters
-
parameter (Parameter) – parameter to append