LogSoftmax¶
- class paddle.nn. LogSoftmax ( axis=- 1, name=None ) [source]
-
This operator implements the log_softmax layer. The calculation process is as follows:
\[\begin{split}\begin{array} {rcl} Out[i, j] &= &log(softmax(x)) \\ &= &log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])}) \end{array}\end{split}\]- Parameters
-
axis (int, optional) – The axis along which to perform log_softmax calculations. It should be in range [-D, D), where D is the dimensions of the input Tensor . If
axis
< 0, it works the same way as \(axis + D\) . Default is -1.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shape:
-
input: Tensor with any shape.
output: Tensor with the same shape as input.
Examples
>>> import paddle >>> x = [[[-2.0, 3.0, -4.0, 5.0], ... [ 3.0, -4.0, 5.0, -6.0], ... [-7.0, -8.0, 8.0, 9.0]], ... [[ 1.0, -2.0, -3.0, 4.0], ... [-5.0, 6.0, 7.0, -8.0], ... [ 6.0, 7.0, 8.0, 9.0]]] >>> m = paddle.nn.LogSoftmax() >>> x = paddle.to_tensor(x) >>> out = m(x) >>> print(out) Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[[-7.12783957 , -2.12783957 , -9.12783909 , -0.12783945 ], [-2.12705135 , -9.12705135 , -0.12705141 , -11.12705135], [-16.31326103, -17.31326103, -1.31326187 , -0.31326184 ]], [[-3.05181193 , -6.05181217 , -7.05181217 , -0.05181199 ], [-12.31326675, -1.31326652 , -0.31326646 , -15.31326675], [-3.44018984 , -2.44018984 , -1.44018972 , -0.44018975 ]]])
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.