layer_norm¶
- paddle.nn.functional. layer_norm ( x, normalized_shape, weight=None, bias=None, epsilon=1e-05, name=None ) [source]
-
nn.LayerNorm is recommended. For more information, please refer to LayerNorm .
- Parameters
-
x (Tensor) – Input Tensor. It’s data type should be bfloat16, float16, float32, float64.
normalized_shape (int|list|tuple) – Input shape from an expected input of size \([*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]\). If it is a single integer, this module will normalize over the last dimension which is expected to be of that specific size.
weight (Tensor, optional) – The weight tensor of batch_norm. Default: None.
bias (Tensor, optional) – The bias tensor of batch_norm. Default: None.
epsilon (float, optional) – The small value added to the variance to prevent division by zero. Default: 1e-05.
name (str, optional) – Name for the LayerNorm, default is None. For more information, please refer to Name .
- Returns
-
None
Examples
>>> import paddle >>> paddle.seed(2023) >>> x = paddle.rand((2, 2, 2, 3)) >>> layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:]) >>> print(layer_norm_out) Tensor(shape=[2, 2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[[[ 0.87799639, -0.32706568, -1.23529339], [ 1.01540327, -0.66222906, -0.72354043]], [[ 1.24183702, 0.45458138, -0.33506915], [ 0.41468468, 1.26852870, -1.98983312]]], [[[ 0.02837803, 1.27684665, -0.90110683], [-0.94709367, -0.15110941, -1.16546965]], [[-0.82010198, 0.11218392, -0.86506516], [ 1.09489357, 0.19107464, 2.14656854]]]])