resnext50_32x4d¶
- paddle.vision.models. resnext50_32x4d ( pretrained=False, **kwargs ) [source]
-
ResNeXt-50 32x4d model from “Aggregated Residual Transformations for Deep Neural Networks”.
- Parameters
-
pretrained (bool, optional) – Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False.
**kwargs (optional) – Additional keyword arguments. For details, please refer to ResNet.
- Returns
-
Layer. An instance of ResNeXt-50 32x4d model.
Examples
>>> import paddle >>> from paddle.vision.models import resnext50_32x4d >>> # build model >>> model = resnext50_32x4d() >>> # build model and load imagenet pretrained weight >>> # model = resnext50_32x4d(pretrained=True) >>> x = paddle.rand([1, 3, 224, 224]) >>> out = model(x) >>> print(out.shape) [1, 1000]